
PRELIMINARIES

1. Conventions. The book is divided into 16 chapters, each subdivided
into sections numbered in order (e.g. chapter 12, section 3 is numbered 12.3).

Within each chapter results (Theorems, Propositions or Lemmas) are la-
belled by the chapter and then the order of occurrence (e.g. the fifth result
in chapter 3 is Proposition 3.5). The exceptions to this rule are: sublem-
mas which are presented within the context of the proof of a more important
result (e.g. the proof of Theorem 2.2 contains Sublemmas 2.2.1 and 2.2.2);
and corollaries (the corollary to Theorem 5.5 is Corollary 5.5.1).

We denote the end of a proof by �.
Finally, equations are numbered by the chapter and their order of occur-

rence (e.g. the fourth equation in chapter 5 is labelled (5.4))

2. Notation. We shall use the standard notation: R to denote the
real numbers; Q to denote the rational numbers; Z to denote the integer
numbers; N to denote the natural numbers; and Z

+ to denote the non-
negative integers. We use the convenient convention that: R/Z = {x +
Z : x ∈ R} (which is homeomorphic to the standard unit circle); R2/Z2 =
{(x1, x2) + Z2 : (x1, x2) ∈ R2} (which is homeomorphic to the standard 2-
torus); etc. However, for x ∈ R we denote the corresponding element in R/Z
by x (mod 1) (and similarly for R2/Z2, etc.).

We denote the interior of a subset A of a metric space by int(A), and we
denote its closure by cl(A).

If T : X → X denotes a continuous map on a compact metric space then
Tn (n ≥ 1) denotes the composition with itself n times.

If T : I → I is a C1 map on the unit interval I = [0, 1] then T ′ denotes its
derivative.

3. Prerequisites in point set topology (chapters 1-6). The first six
chapters consist of various results in topological dynamics for which the only
prerequisite is a working knowledge of point set topology for metric spaces.
For example:

Theorem A (Baire). Let X be a compact metric space; then if {Un}n∈N
is a countable family of open dense sets then

⋂
n∈N Un ⊂ X is dense.
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Theorem B (sequential compactness). Let X be a metric space;
then X is compact if and only if every sequence (xn)n∈N in X contains a
convergent subsequence.

Theorem C (Zorn’s lemma). Let Z be a set with a partial ordering. If
every totally ordered chain has a lower bound in Z then there is a minimal
element in Z.

Two good references for this material are [4] and [5]

4. Pre-requisites in measure theory (chapters 7-12). Chapters 7-
12 form an introduction to ergodic theory, and suppose some familiarity (if
not expertise) with abstract measure theory and harmonic analysis. The
following results will be required.

Theorem D (Riesz representation). There is a bijection between
(1) probability measures µ on a compact metric space X (with the Borel

sigma algebra),
(2) Continuous linear functionals c : C0(X)→ R,

given by c(f) =
∫
fdµ.

Theorem E. Let (X,B, µ) be a measure space. For every linear func-
tional α : L1(X,B, µ) → L1(X,B, µ) there exists k ∈ L∞(X,B, µ) such that
α(f) =

∫
f · kdµ, ∀f ∈ L1(X,B, µ) [3, p.121].

In proving invariance of measures in examples the following basic result
will sometimes be assumed.

Theorem f (Kolmogorov extension). Let B be the Borel sigma-
algebra for a compact metric space X. If µ1 and µ2 are two measures for the
Borel sigma-algebra which agree on the open sets of X then m1 = m2 [3, p.
310].

The following terminology will be used in the chapter on ergodic measures.
Given two probability measures µ, ν we say that µ is absolutely continuous
with respect to ν if for every set B ∈ B for which ν(B) = 0 we have that
µ(B) = 0. We write µ << ν and then we have the following result.

Theorem G (Radon-Nikodym). If µ is absolutely continuous with re-
spect to µ then there exists a (unique) function f ∈ L1(X,B, dν) such that
for any A ∈ B we can write µ(A) =

∫
A
fdν.

We usually write f = dµ
dν and call this the Radon-Nikodym derivative of µ

with respect to ν.
We call two measures µ, ν mutually singular if there exists a set B ∈ B

such that µ(A) = 0 and ν(A) = 1. We then write µ ⊥ ν.
In chapter 8 we shall need a passing reference to Lebesgue spaces. A

Lebesgue space is a measure space which is measurably equivalent to the
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the union of unit intervals (with the usual Lebesgue measure) with at most
countably many points (with non-zero measure).

In chapter 11 we shall use the following result.

Theorem H (dominated convergence). Let h ∈ L1(X,B, µ) and let
(fn)n∈Z+

⊂ L1(X,B, µ), with |fn(x)| ≤ h(x), converge (almost everywhere) to f(x);
then

∫
fndµ→

∫
fdµ as n→ +∞.

Good general references for this material are [1], [2], [3].

5. Subadditive sequences. A simple result which proves its worth
several times in these notes is the following.

Theorem F (subadditive sequences). Let (an)n∈N be a sequence of
real numbers such that an+m ≤ an + am, ∀n,m ∈ N (i.e. a subadditive
sequence); then an → a, as n→ +∞, where a = inf{an/n: n ≥ 1}

Proof. First note that an ≤ a1 + an−1 ≤ . . . ≤ na1, and so a ≤ a1 For
ε > 0 we choose N > 0 with aN < N(a + ε). For any n ≥ 1 we can write
n = kN + r, where k ≥ 0 and 1 ≤ r ≤ N − 1. Then

an ≤ akN + ar ≤ kaN + ar ≤ kaN + sup
1≤r≤N

ar

and we see that

lim sup
n→+∞

an
n
≤ lim sup

k→+∞

kaN + sup1≤r≤N ar

kN
=
aN
N
≤ a+ ε.

This shows that an
n → a, as required.

�
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