ERRATA FOR "DYNAMICAL SYSTEMS AND ERGODIC THEORY"

PRELIMINARIES

Thereom G should read:

Theorem G (Radon-Nikodym). If μ is absolutely continuous with respect to ν then there exists a (unique) function $f \in L^1(X, \mathcal{B}, d\nu)$ such that for any $A \in \mathcal{B}$ we can write $\mu(A) = \int_A f d\nu$.

CHAPTER I

page 1, Example 1: It should read $0 < \theta < 1$ (Tex error).

page 2, line 2: $y = (y_n)_{n \in \mathbb{Z}}$ instead of $x = (x_n)_{n \in \mathbb{Z}}$, again.

page 2, Proof of Lemma 1.1: The superscript ks should become ms, say (Too many ks)

page 3, Example 1: It should read " $T^k x = \sum_{n=0}^{+\infty} \frac{x_{n+k}-1}{2^{n+1}} \pmod{1}$."

page 7, Theorm 1.8: The sets in \mathcal{E} should also be closed.

CHAPTER 2

page 12, Proof of Theorm 1.8: We should define $T_i := T^i = (\sigma \circ \ldots \circ \sigma)$

page 13, line 2: It should read $(T^bT_i^ax)_0 = x_{b+ia} = z_a \in \{1, ..., k\}$

page 13, bottom: It should read "In particular, $d_{\mathcal{X}_N}(S^{n_i}\underline{z}',z) \to 0$ as $n_i \to +\infty$ where $\underline{z} = (z,\ldots,z), \underline{z}' = (T_N^{-n_i}z,\ldots,T_N^{-n_i}z) \in \mathcal{D}_N$."

page 14-15, Sublemma 2.2.4 (and proof): Each \mathcal{D} is really \mathcal{D}_N (subscripts omitted)

page 15, mid-page: It should read "The proof of Theorem 2.3 is finished".

page 16, after (2.3): It should read: $d_{\mathcal{D}_N}(S^nz, z') < \delta$ $(S^n \text{ for } T^n)$.

page 16, displayed equation (2.3): It should read $d_{\mathcal{X}_N}(\hat{T}^{n_{1j}} \circ ... \circ \hat{T}^{n_{Nj}} z, \hat{T}^{n_{1j}} \circ ... \circ \hat{T}^{n_{Nj}} z') < \frac{\epsilon}{4}$. (no negative powers.)

page 16, displayed equation (2.4): $d_{\mathcal{X}_N}\left(S^n\left(\hat{T}^{n_{1j}}\circ\ldots\circ\hat{T}^{n_{Nj}}z\right),\hat{T}^{n_{1j}}\circ\ldots\circ\hat{T}^{n_{Nj}}z'\right)<\frac{\epsilon}{4}.$ $(S^n \text{ for } T^n)$

page 16, last displayed equation:

$$d_{\mathcal{X}_{N}}(S^{n}y,x) \leq d_{\mathcal{X}_{N}}(S^{n}y,\hat{T}^{n_{1j}} \circ \dots \circ \hat{T}^{n_{Nj}}z') + d_{\mathcal{X}_{N}}(\hat{T}^{n_{1j}} \circ \dots \circ \hat{T}^{n_{Nj}}z',x)$$

$$+ d_{\mathcal{X}_{N}}(\hat{T}^{n_{1j}} \circ \dots \circ \hat{T}^{n_{Nj}}z,\hat{T}^{n_{1j}} \circ \dots \circ \hat{T}^{n_{Nj}}z')$$

$$+ d_{\mathcal{X}_{N}}(\hat{T}^{n_{1j}} \circ \dots \circ \hat{T}^{n_{Nj}}z,x)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{4} + \frac{\epsilon}{4} = \epsilon.$$

(term missing)

page 17, after (2.5): Another \mathcal{D} which should be a \mathcal{D}_N (subscript omitted). Comments and references: It should read "An account also appears in [5]."

Chapter 3

page 19, last displayed equation: There is a \cap missing.

page 22, first paragraph of proof: It should read : This means that $N(\vee_{i=0}^{k-1}T^{-i}(\vee_{n=0}^{N-1}T^{-n}\alpha)) \ge N(\vee_{i=0}^{k-1}T^{-i}\beta)$, for $k \ge 1$.

page 22, Definition: It should read The matrix A is called *aperiodic* if $\exists N > 0$, $\forall 1 \leq i, j \leq k, A^N(i, j) \geq 1$. (Power of N missing)

page 22, mid-page. The displayed equation should read

$$\bigvee_{n=-N}^{N} \sigma^{-n} \alpha = \{ [i_{-N}, \dots, i_0, \dots, i_N]_{-N}^{N} : i_{-N}, \dots, i_0, \dots, i_N \in \{1, \dots, k\} \}$$

and serveral $\sigma^{-i}\alpha$ should change to $\sigma^{-n}\alpha$.

page 23, mid-page. It should read $A(v_1,\ldots,v_k)^T=(v_1',\ldots,v_k')^T=(\sum_{i=1}^k A(i,1)v_i,\ldots,\sum_{i=1}^k A(i,1)v_i)^T$ (the transpose \cdot^T is omitted)

page 24, end of proof. It should read: However, elementary calculus shows that the supremum is realised where $z = (\frac{bd}{ac})^{1/2}$ and thus

$$C < \frac{\nu^{1/2} - \nu^{-1/2}}{\nu^{1/2} + \nu^{-1/2}} < 1,$$

where $\nu := \frac{ad}{bc} > 1$. page 24, bottom of page. It should read "a contraction with respect to this metric". (The error seems to appear in the source article: G. Birkhoff, *Extensions of Jentzsch's theorem*, Trans. Amer. Math. Soc., 85 (1957) 219-227)

page 25, second paragraph. It should read "C < 1 is independent of the choices x, y."

page 25, last displayed equation. It should read

$$H\left(\vee_{n=0}^{N-1}\sigma^{-n}\alpha\right) = \log\operatorname{Card}\left(\vee_{n=0}^{N-1}\sigma^{-n}\alpha\right) = \cdots$$

page 26, near top. It should read " ... Jordan block matrices B_2, \ldots, B_l, \ldots "

page 26, Lemma 3.6 (i) It should read: $s(n, \epsilon') \geq s(n, \epsilon)$ and $r(n, \epsilon') \geq r(n, \epsilon)$.

page 27, near top For $r(n, \epsilon) \geq s(n, \epsilon)$ read $s(n, \epsilon) \geq r(n, \epsilon)$.

page 28, near the bottom It should read: $\limsup_{n\to+\infty}\frac{1}{n}\log N\left(\vee_{i=0}^{n-1}T^{-i}\beta\right)$ (by Lemma 3.7 ((H instead of N)

page 30, near the top It should read: $r_{T^m}(n,\epsilon) \leq r_T(nm,\epsilon)$ (r missing).

page 30, middle of page. It should read R is also an (n, ϵ) -spanning set for T^m $(T^m \text{ not } T^n)$.

Chapter 4

page 33, Proof of Lemma 4.3 It should read "Let $J_2 = [a, b]$ " page 35, Sublemma 4.4.1 It should read:

(ii)
$$T^{n-1}(I_{n-1}) = J'$$
; and

(iii) $T^n(I_{n-1})\supset J''$.

page 36, second paragraph. The two J' should be J''.

page 37, Proof of Lemma 4.5. The intervals of monotonicity for $S_1 \circ S_2$: $I \to I$ take the form $J_j \cap S_2^{-1}(I_i)$. Thus $\mathcal{N}(S_1 \circ S_2) \leq \operatorname{Card}\{(i,j) : J_j \cap S_2^{-1}(I_i) \neq I \}$ $\emptyset\} \le N(S_1) \cdot N(S_2).$

page 37, Remark. The chain rule says: $(T^n)'(x) = \prod_{i=0}^{n-1} T'(T^i x)$. page 37, Proof of Theorem 4.6. It should read: $0 \le r_i \le n-1$ and $0 \le r_i \le n - 1$.

page 37, penultimate paragraph. It is better to write: $\{x_{i_0} < x_{i_1} < \ldots < a_{i_n} < a_{i$ $x_{i_{m-1}}\}\subset E_n$

page 37, last paragraph. It should read: there are at least $\frac{m\epsilon}{C}$ intervals of monotonicity for T^r , i.e. $\mathcal{N}(T^r) \geq \frac{m\epsilon}{C} \geq \frac{N}{Cn}\epsilon$. Thus

$$\lim_{n \to +\infty} \frac{1}{n} \log \mathcal{N}(T^n) \ge \lim_{n \to +\infty} \frac{1}{n} (\log s(n, \epsilon) -$$

page 38, after first displayed equation.

It should read.

$$m\left(\lim_{n\to+\infty}\frac{1}{n}\log\mathcal{N}(T^n)\right) = m\left(\limsup_{n\geq 1}\frac{1}{n}\log\mathcal{N}(T^n)\right)$$
$$\geq \limsup_{k\geq 1}\frac{1}{k}\log\mathcal{N}(S^k)$$
$$= \lim_{k\to\infty}\frac{1}{k}\log\mathcal{N}(S^k)$$

(since $\left(\frac{m\log \mathcal{N}(S^k)}{k}\right)_{k\in\mathbb{N}}$ is a sub-sequence of $\left(\frac{\log \mathcal{N}(T^n)}{n}\right)_{n\in\mathbb{N}}$. Moreover, we can estimate

$$m\left(\lim_{n\to\infty} \frac{1}{n}\log \mathcal{N}(T^n)\right)$$

$$\leq \lim_{n\to\infty} \frac{m}{n}\log\left(\mathcal{N}(S^{\left[\frac{n}{m}\right]})\mathcal{N}(T^{n-\left[\frac{n}{m}\right]m})\right) \quad \text{(by Lemma 4.5)}$$

$$\leq \lim_{n\to\infty} \frac{m}{n}\log\left(\mathcal{N}(S^{\left[\frac{n}{m}\right]}) + \max_{0\leq i\leq m-1}\left\{\log \mathcal{N}(T^i)\right\}\right)$$

$$= \lim_{k\to\infty} \frac{1}{k}\log \mathcal{N}(S^k).$$

page 39, first displayed equation. It should read

$$\geq \limsup_{k \to +\infty} \frac{1}{k} \log \left(\mathcal{N}(S^k) / 3^k \right) \qquad (\text{since } \mathcal{N}(S^k) \leq 3^k N(\vee_{r=0}^{k-1} S^{-r} \alpha))$$

page 42, Proof of (i). It should read for every point x in the complement of the dense set $\bigcup_{n\in\mathbb{Z}^+} T^{-n}\{x_0,\ldots,x_k\}$

page 42, Proof of (ii). It should read $\pi(w) = z$ (twice) instead of $\pi(w) = x$.

page 43, Proof of Theorem 4.9. We actually use Proposition 3.11.

page 43, Proof of sublemma 4.9.1. We actually use Proposition 3.5.

page 44, Proof of sublemma 4.10.1. For λ_0 read λ_1 .

Chapter 5

page 47 We should use $GL(2,\mathbb{Z})$ instead of $SL(2,\mathbb{Z})$.

page 47 To give the broadest definition of hyperbolicity we should ue

Let $A \in GL(2,\mathbb{Z})$ have eigenvalues λ_1, λ_2 then if $|\lambda_1| > 1 > |\lambda_2| (= \frac{1}{|\lambda_1|})$ we call the matrix A hyperbolic

page 49, below figure 5.2 It should read: (where $(x_1, x_2) \in [0, 1) \times [0, 1)$).

page 50, near the top Delete the upper bound on k (For the "boxes" below to cover we should require $k \leq \frac{4}{e^2 \sin \theta}$, where θ is the angle between the eigenvectors.)

page 50, Next paragraph add "We can choose boxes such that $Box(x_1^i, x_2^i)$, $i=1,\ldots,n$ cover the torus."

page 50, Proof of Sublemma 5.3.1 Change the first line(s) to: "For any point $(z_1,z_2) \in \mathbb{R}^2/\mathbb{Z}^2$ we can choose some $i=1,\ldots,k$ such that $(z_1,z_2) \in \text{Box}(x_1^i,x_2^i)$

page 51, displayed equation (5.2) Change to: $\lim_{\epsilon \to 0} \lim_{n \to +\infty} \frac{1}{n} \log r(n, \epsilon) \le 1$ $\lim_{\epsilon \to 0} \lim_{n \to +\infty} \frac{1}{n} \log (k(2[|\lambda_1|^n] + 1)).$ **page 51, sublemma 5.3.2.** The statement should read: "S is an $(n, 2\epsilon/|\lambda_1|)$ -

separated".

Chapter 6

page 59, proof of part (i). In fact, it is the argument in part (ii).

page 59, statement of Lemma 6.3. We are assuming ρ is irrational.

page 60, first line. Assume $n_1 > n_2$

page 60, first paragraph. There Ts should be \hat{T} (i.e. hats missing).

page 61, lower part of page. It should read: "It is easy to see that if $T: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ is C^2 with |T''|/|T'| is bounded then $\operatorname{Var}(\log |T'|)$ is finite."

page 62, Statement of Sublemma 6.5.1. The displayed equation should be $|(T^{q_n})'(x)| \cdot |(T^{-q_n})'(x)| \geq C.$

page 62, Displayed equation, mid-page. It should read $|I_{q_n}| + |I_{-q_n}|$ (misplaced minus sign).

page 62, last line. It should read $|T^{q_n}x - x| = \delta_n$.

page 63, displayed equation (6.4). The second line should read \geq instead of =.

Chapter 7

page 67, first displayed equation. In the first line the upper limit in the sum should be $N_n^{(n)} - 1$; the second line should be $f_k(T^{N_n^{(n)}})x) + \sum_{n=0}^{N_n^{(n)}-1} f_k(T^n x) - f_k(x)$ (reverse signs).

page 68, item (2). It should read "for every non-empty open set $U \subset X$ "

page 68, mid-page. It should read $\mu([z_0,\ldots,z_n])=\left(\frac{1}{2}\right)^{n+1}$ (n+1) instead of n).

page 69, second line. For (1, ..., 1) read $(1, ..., 1)^T$ (i.e. the transpose).

CHAPTER 8

page 74, Lemma 8.1. Part (1) should read $I(\alpha|\{\emptyset,X\})(x) = I(\alpha)(x)$;

Part(2) should read $I(\alpha|\mathcal{A})(Tx) = I(T^{-1}\alpha|T^{-1}\mathcal{A})(x)$.

page 74, line before definition. Delete the erroneous comment "(in particular, $\hat{\alpha}$ is countable and consists of all unions of elements from α)."

page 75, last displayed equation. It should read $I(\alpha \vee \beta | \hat{\gamma})(x)$ (hat missing in $\hat{\gamma}$).

page 76, proof of lemma 8.3. It should be corrected to: "For part (4) we have

$$H(\alpha|\gamma) = -\sum_{A \in \alpha, C \in \gamma} \mu(A \cap C) \log \left(\frac{\mu(A \cap C)}{\mu(C)}\right)$$

$$= -\sum_{C \in \gamma} \mu(C) \left[\sum_{A \in \alpha} \frac{\mu(A \cap C)}{\mu(C)} \log \left(\frac{\mu(A \cap C)}{\mu(C)}\right)\right]$$

$$\leq -\sum_{A \in \alpha} \left[\sum_{C \in \gamma} \mu(A \cap C)\right] \log \left[\sum_{C \in \gamma} \mu(A \cap C)\right]$$

$$\leq -\sum_{A \in \alpha} \mu(A) \log \mu(A) = H(\alpha)$$

since for fixed $A \in \alpha$ we can bound

$$-\sum_{C \in \gamma} \frac{\mu(A \cap C)}{\mu(C)} \log \left(\frac{\mu(A \cap C)}{\mu(C)} \right) \le -\left[\sum_{C \in \gamma} \mu(A \cap C) \right] \log \left[\sum_{C \in \gamma} \mu(A \cap C) \right]$$

using concavity of $t \mapsto -t \log t$."

Chapter 9

page 95, line 3 : Replace $X \times \mathbb{R}/\mathbb{Z}$ by $X \times G$.

page 95, line 25 from below: $\mu(A) > 0$ should be $0 < \mu(A) < \infty$.

page 96, line 5 from below: $\hat{T}: X \to X$ should be $\hat{T}: \hat{X} \to \hat{X}$.

page 96, line 1: natural extension of X sould be natural extension of T.

page 96, line 2: $\pi((x_n)_{n\in\mathbb{Z}^+}) = X$ should be $\pi((x_n)_{n\in\mathbb{Z}^+}) = x_0$

Chapter 10

page 100, line 2 from below : = $\int f(x)g(x)d\mu(x)$ should be removed.

page 101, line 6: $\epsilon ||g||_2$ should be $\sqrt{\epsilon} ||g||_2$.

page 101,lines 11,13: Replace $(\int f d\mu \int g d\mu - \epsilon, \int f d\mu \int g d\mu + \epsilon)$ should be $(\int f_1 g d\mu - \epsilon, \int f_1 g d\mu + \epsilon)$. **Mark?** Hoeever..??? Or are you assuming ergodicity?

page 102, line 5 from below: We assume $min(f_+, f_-) = 0$.

page 105, line 9: We assume ergodicity.

page 106, lines 17-18: Replace $2^k, r_k$ by $2^n, r_n$ respectively.

page 107: (ii) should be corrected as follows. (ii) there exists D > 0 such that $\sup_{x,y,z\in I_k} \frac{|T''(x)|}{|T'(y)T'(z)|} \leq D, \ \forall 0 < x < 1. \ \text{Then } |\frac{\psi'_{k_0...k_n}(x)}{\psi'_{k_0...k_n}(y)}| \ \text{is bounded from above}$

$$\prod_{i=0}^{n} \left(1 + \frac{D}{4^{[(n-i-1)/2]}} |T^n x - T^n y| \right) \le C.$$

We assume in (a) that $l(E \cap I_{k_0} \cap T^{-1}I_{k_1} \cap ... \cap T^{-n}I_{k_n}) > 0$.

page 109, line 18: Replace "Absolutely continuous "by "nonsingular".

page 110, line 2: Mark?: We should put a reference for the ergodicity of the geodesic flow....

page 111, line 19 from below: Replace "sublemmas 10.5.1 and 10.5.2" by "sublemmas 10.2.1 and 10.2.2."

CHAPTER 11

page 115: Lemma 11.4: " a bounded sequence of real numbers $\{a_n\}$ " should read " a bounded sequence of positive numbers $\{a_n\}$."

page 115, line 3 from below: N_k, N_{k+1} should be n_k, n_{k+1} respectively.

page 117, line 6 from below: "(11-1), (11.2) and (11.3)" should be "(11-2), (11.3) and (11.4) "

page 118, line 3 from below: It should read $n \in \mathbb{Z}$.

page 119, line 1: It should read $n \in \mathbb{Z}$.

page 120 All C^{\perp} should be \mathbb{C}^{\perp} .

120, Proof of Proposition 11.8 : $\bar{\mu}$ denotes the spectral measure.

page 121,(2) \implies (3): All n_i should b n_k .

page 121, line 8 from below: $\mu(T^{-n_i}B_i \cap D_j)$ should be removed.

page 123, line 9: It should read " (by writing P in terms of Jordan forms)"

page 123, line 7 from below: It should read $\mu(A \cap T^{-(n+l)}B) \to \mu(A)\mu(B)$ as $n \to +\infty$.

Chapter 12

page 125, line 8 from below: It should read " $\{k_i \circ T^n\}_{i=0}^{j_n}$ for $L^2(T^{-n}\mathcal{B}) \ominus$ $L^{2}(T^{-(n+1)}\mathcal{B})$. It follows that $\{k_{i}\circ T^{n}\}_{i=0}^{j_{n}} \overset{\infty}{\underset{n=0}{\longrightarrow}}$.

page 126, line 4: Example 1 should be one-sided aperiodic Markov shifts(aperiodicity is missing).

 $\int_A f(x)dx$ should be $\int_{T^{-1}A} f(x)dx$. page 127, line 4:

page 128, line 6: $K\exp\left(|x-y|\frac{D'}{1-\frac{1}{\beta}}\right)$ should be $K\left(|x-y|\frac{D'}{1-\frac{1}{\beta}}\right)$ page 129, line 15: It should read "we can choose a finite disjoint set of

cylinders $\{I_{\underline{j}}: \underline{j}=(j_1,\ldots,j_l)\}$, with $\mu\left(\left(\cup_{\underline{j}}I_{\underline{j}}\right)\Delta A\right)<\epsilon$." **page 129 line 2 from below:** It should read

$$\sup_{x,y \in T^n I_{\underline{i}}} \frac{|\psi_{\underline{i}'}(x)|}{|\psi_{\underline{i}'}(y)|} \le C. \tag{12.2}$$

page 130, Sublemma 12.5.1. The statement should read "There exist S > 0and a subset I' of $T^l(I_j)$ which is a finite disjoint union of elements of $\bigvee_{i=0}^{S-1} T^{-i} \{I_1 \dots I_k\}$ and satisfies $T^S(I')=I$. " In the proof, $T^{s_i}U_i\supset T^{s_i}I^{(i,j)}_{m_1,\ldots,m_{s_j}}$ should be $T^{s_j}U_i\supset T^{s_j}I^{(i,j)}_{m_1,\ldots,m_{s_j}}$.

page 131, Proof of Proposition 12.6: All $I_{tm_1...m_{s_i}}^{(i)}$ should be $I_{m_1...m_{s_i}}^{(i)}$. Relace $\psi_{tm_1...m_{s_i}h_1...h_t}(x)$ by $\psi_{m_1...m_{s_i}}(x)$. "Here we take $t = S - s_i$ " on the line 17 should be put before " Let $l = l(\epsilon)$ " on the line 15.

page 132, lines 5-6: It should read " $\mathcal{L}^*(\mu) = \mu$, i.e. the dual operator $\hat{\mathcal{L}}^*$ acting on measures (defined by $(\mathcal{L}^*\mu)(A) = \int \mathcal{L}\chi_A d\mu$) fixes μ ."

page 124, line 7: it should read "Channon-McMillan- Breiman theorem".

page 134, line 14: It should read $\alpha_n = \bigvee_{i=0}^{n-1} T^{-i} \alpha$.

page 135 line 1 from below: $I(\alpha|\vee_{j=1}^{n-i}T^{-j}\alpha)T^i$ should be replaced by $I(\alpha|\vee_{j=1}^{n-1-i}T^{-j}\alpha)T^i$.

page 135-136: Mark? How to correct.....

Define

$$F_m(x) =: |I(\alpha)| \vee_{j=1}^m T^{-j}(\alpha)(x) - I(\alpha)| \vee_{j=1}^\infty T^{-j}(\alpha)(x)|.$$

Then we see that

$$\frac{1}{n} \left| I(\vee_{i=0}^{n-1} T^{-i} \alpha) - \sum_{i=0}^{n-1} f T^{i} \right| \le \frac{1}{n} \sum_{j=0}^{n-1} F_{n-j} T^{j}(x).$$

It follows from Corollary 1.2 in page 96 in [Mane's book] that if F_n is a sequence that converges to 0 almost everywhere and in L^1 then $\frac{1}{n} \sum_{j=0}^{n-1} F_{n-j} T^j(x)$ converges to 0 almost everywhere and in L^1 . It is easy (??) to see pointwise convergence and L^1 -convergence of F_n to 0 (?!)

Chapter 14

page 147, line 12: It should read " a compact metric space."

page 147, line 12 from below : It shoud read " a finite Borel measurable
partition "

page 148, line 7: Sub-lemma 14.1 should be Sub-lemma 14.7.

page 148, line 2 from below: It should read

$$"h_{\mu} \left(T^{k}, \vee_{i=0}^{k-1} T^{-i} \alpha \right) = \lim_{n \to +\infty} \frac{1}{n} H_{\mu} \left(\vee_{i=0}^{n-1} T^{-ik} \left(\vee_{j=0}^{k-1} T^{-j} \alpha \right) \right) "$$

page 149, line 8: It should read

"
$$h_{\mu}(T^k) \ge h_{\mu}\left(T^k, vee_{i=0}^{k-1}T^{-i}\alpha\right) \ge kh_{\mu}(T, \alpha) \ge kh_{\mu}(T) - k\epsilon$$
."

page 151, line 2 : It should read " $C \in T^{-l}\alpha^{(N)}$ with $(T^l)^*\nu_{n_i}(D) := \nu_{n_i}(T^{-l}D) = \nu_{n_i}(C)$ and $C = T^{-l}D$."

page 151, line 5: It should read:

$$"N\log(s(n_i,\epsilon)) \le \sum_{l=0}^{n_i-1} \left(-\sum_{D \in \alpha^{(N)}} (T^l)^* \nu_{n_i}(D) \log((T^l)^* \nu_{n_i}(D)) \right) + 2N^2 \log k"$$

page 151, line 9 from below: It should read

"
$$\leq -\frac{1}{N} \sum_{C \in \alpha^{(N)}} \mu_{n_i}(C) \log \mu_{n_i}(C) + \frac{2N \log k}{n_i}$$
"

page 151, line 5 to page 152, line 2 : All H_{ν} should be H_{μ} .

Chapter 15

page 154, (3): It should read

$$\int f(x+a)d\mu = \lim_{n \to +\infty} \int E(f(x+a)|S^{-n}\mathcal{B})d\mu = \lim_{n \to +\infty} \int E(f(x)|S^{-n}\mathcal{B})d\mu = \int f(x)d\mu$$

and thus we know that μ is the Haar-Lebesgue measure. "

page 154, (4): It should read

"
$$T'(Sx) \cdot S'(x) = (TS)'(x) = (ST)'(x) = S'(Tx) \cdot T'(x)$$
."

page 155, line 6 : it should read " $E(.|T^{-1}\mathcal{B})(x):L^2(X,\mathcal{B},\mu)\to L^2(X,\mathcal{B},\mu)$ is an orthogonal projection which is a contraction"

page 155, line 7 from below: It should read " $S^{n'}$ and S' are \mathcal{A}_n -measurable

Proof 157 : It should read : " Thus by subadditivity the limit $h(T|\mathcal{A}) :=$ $\lim_{n\to+\infty} \frac{1}{n} H(\vee_{i=0}^{n-1} T^{-i} \gamma | \mathcal{A})$ exists. By the basic equalities for entropy we see that

$$h(T|\mathcal{A}) = \lim_{n \to +\infty} \frac{1}{n} H(\vee_{i=0}^{n-1} T^{-i} \gamma | \mathcal{A})$$

$$= \lim_{n \to +\infty} \frac{1}{n} \left(H\left(\vee_{i=0}^{n-2} T^{-i} \gamma | \mathcal{A}\right) + H\left(T^{-(n-1)} \gamma | \mathcal{A} \vee \left(\vee_{i=0}^{n-2} T^{-i} \gamma\right)\right) \right)$$

$$= h(T)$$

since

$$h(T) = \lim_{n \to +\infty} \frac{1}{n} \left(H(\vee_{i=0}^{n-2} T^{-i} \gamma) \right)$$

and

$$H\left(T^{-(n-1)}\gamma|\mathcal{A}\vee\left(\vee_{i=0}^{n-2}T^{-i}\gamma\right)\right)\leq H\left(T^{-(n-1)}\gamma|\mathcal{A}\right)=H(\gamma|\mathcal{A})<+\infty.$$

It follows from Sub-lemma 15.1.3 that $h(T|\mathcal{A}) = \frac{\log 3}{\log 2} h(S|\mathcal{A})$ and so we have that the following limit exists

$$h(S|\mathcal{A}) := \lim_{n \to +\infty} \frac{1}{n} H(\vee_{i=0}^{s_n-1} T^{-i} \gamma | \mathcal{A}).$$

Observe that if we replace A by the trivial sigma-algebra then the same argument gives that $h(T) = \frac{\log 3}{\log 2} h(S)$. Comparing these identities we see that h(S) = h(S|A).

page 158: In Sub-lemma 15.1.5 and in the proof, all \mathcal{B} , β should be γ .