CHAPTER 9

ERGODIC MEASURES

In this chapter we shall consider the stronger property of ergodicity for an
invariant probability measure p. This property is more appropriate (amongst
other things) for understanding the “long term” average behaviour of a trans-
formation.

9.1 Definitions and characterization of ergodic measures

DEFINITION. Given a probability space (X, B, ), a transformation T :
X — X is called ergodic if for every set B € B with T~!B = B we have that
either y(B) =0 or u(B) = 1.

Alternatively we say that p is T-ergodic.
The following lemma gives a simple characterization in terms of functions.

LEMMA 9.1. T is ergodic with respect to u iff whenever f € LY(X, B, p)
satisfies f = foT then f is a constant function.

Proor. This is an easy observation using indicator functions.

9.2 Poincaré recurrence and Kac’s theorem

We begin with one of the most fundamental results in ergodic theory.

THEOREM 9.2 (POINCARE RECURRENCE THEOREM). Let T : X — X
be a measurable transformation on a probability space (X,B,p). Let A € B
have u(A) > 0; then for almost points x € A the orbit {T"x},>0 returns to
A infinitely often.

PROOF. Let FF = {x € A: T"x ¢ A,Vn > 1}, then it suffices to show
that p(F) = 0.

Towards this end, we first observe that T-"FNT"F = () when n > m,
say. If this were not the case and w € T"™F NT~"F then T™w € F and
Tr—™(T™w) € F C A, which contradicts the definition of F.

91



92 9. ERGODIC MEASURES

Thus since the sets {T~"F'},>( are disjoint we see that
Z W(ITF) = (U~ F) < u(X) = 1

and then because p is T-invariant u(F) = p(T7'F) = ... = u(T™"F) =
so we can only have that u(F) = 0.
|

DEFINITION. Let ng : A — Z* U {400} be the first return time i.e.
na(x) > 0 is the smallest value for which T4z ¢ A.

By Theorem 9.2 n4(x) is finite almost everywhere. The next theorem
shows that when p is an ergodic measure then the average return time to A
can be calculated explicitly.

THEOREM 9.3 (KAC’S THEOREM). Let T : X — X be an ergodic trans-
formation on a probability space (X, B, ). Let A € B have u(A) > 0 then we
define the return time function na : A — Z+ U {oco} (which is finite, almost
everywhere). The average return time (with respect to the induced probability

measure [14) 18
1

/AnA(ﬂf)dﬁbA(SU) = A

PROOF. By definition of 14 it is equivalent to show that [, na(z)du(z) =
1. It is useful to define the following sets.

(a) For each n > 1 we define A,, = {x € A: ny(z) =n}, and write A =
Up>1A4n (with A; N A; = 0 for ¢ # j). In particular, Y oo, u(4,) =
1(A).

(b) Forn > 1wedefine B, ={z € X : TVa g Afor 1 <j<n—1,T"'z €
A}. The sets B, are disjoint (i.e. B; N B; = 0 for i # j) and by
ergodicity X = Up>1By, (since Up>1By, D Up>1T™"A D A) so that
2211 p(Bn) = 1.

We can rewrite

[ na@ants) = 3"kt = (ZM )

A k=1 k=1

then if we can show that Y, u(A,) = p(By) this will complete the proof.
When & = 1 we have from the definitions that By = T '4 and so

S m(Ay) = u(A) = p(Bi), as required. For k > 1 we can proceed

by induction. We can partition T71By = Bgy1 U T 1Ay (where T 1A} =

T-1B, NT'A and Bpyy = T-'By N (X — T-'A)). Thus u(T-1By) =

w(Bg) = u(Bry1) + (T~ Ag) = u(Bry1) + u(Ag) and using the inductive

hypothesis we see that u(Bri1) = p(Br) — w(Ax) = >0~ ki1 #(An). This

completes the inductive step and the proof.
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9.3 Existence of ergodic measures

When T : X — X is a continuous map on a compact metric space there is
a very simple relationship between ergodic measures and invariant measures
which we can now describe.

Let M denote the set of invariant probability measures on X. There is a
natural topology on this space called the weak-star topology, i.e. the weakest
topology such that a sequence pu,, € M converges to u € M iff Vf € C°(X),

f fdpn — f fdp.
The following properties of M are well-known (and easily checked):

(i) M is convex (i.e. if 1, po € Mand 0 < a < 1, then ap+(1—a)pus €
M);
(ii) the set M is compact (in the weak-star topology) [5, Theorem 6.10].

LEMMA 9.4. The extremal points in the convexr set M are ergodic mea-
sures (i.e. pu € M is ergodic if whenever pui,pu2 € M and 0 < o < 1 with
p=ap + (1 —a)us then p1 = psg).

The converse is also true, but we shall not require it.

PRrROOF. If p is not ergodic then we can find B € B with T~'B = B and
0 < p(B) < 1. But for any set A € B we can write A = (ANB)U(AN(X —B))
and thus

w(A) = u((ANBYU (AN (X - B)))
 (u(ANB)  (uAN(X — B))
‘“(B)< u(B) )*“(X B)( (X~ B) )

= amn(A) + (1 - a)pa(A)

where o = p(B) and pq(A) = “(ﬁg]f), pa(A) = %. This shows
that p = ap + (1 — @) pa.

PROPOSITION 9.5 (EXISTENCE OF ERGODIC MEASURES). Let X be a com-
pact metric space and B be the Borel sigma-algebra. Given any continuous
map T : X — X there exists at least one T-ergodic probability measure .

PROOF. Choose a dense set of functions fr € C°(X), k > 0. Since the
map p — [ fodp is continuous on M there exists by (weak-star) compactness
at least one v € M such that [ fodv = sup,cp{ [ fodp}. We let

Moz{ueM: /fodl/: Séljr\)/t{/f()du}};
m

then clearly My is non-empty and closed. Similarly, define

M = {V e My : /fldV: sup { fld,u}}

HEMo



94 9. ERGODIC MEASURES

and the same reasoning shows that M; C My C M is non-empty and closed.
Proceeding inductively we define

Mk:{VEMk—13 /fde: sup { fkdﬂ}}

BEME_1

and arrive at a nested sequence M D My D M; DMy D ...D M D....
Since the sets are all closed in M (and hence compact) we have that the
intersection is non-empty. Assume p € Ngez+ M. We want to show that p
is ergodic by showing that it is an extreme point in M.

Assume that p can be written as an affine combination p = auy+(1—a)ps
(with 0 < a < 1); then to show that u is ergodic we need to show that
p1 = pe. Thus it suffices to show that for every fr € C°(X) we have that
[ fefdpr = [ fufdps (since the set fi is dense).

We begin with £ = 0 and observe that by assumption [ fodp = o [ fodpi+
(1 — @) [ fodus. Since p € Mgy we see that sup,,ca{ [ fodm} = [ fodp
implies that [ fodp1 = [ fodpe = supem{ ) fodm}. We thus conclude

(1) the first identity [ fodui = [ fodps is proved.
(2) pa1, p2 € Mo.

Continuing inductively, we establish that for arbitrary & > 0 we have
[ frdps = [ frdpo and py, pe € My. This completes the proof (i.e. g1 = po
and p is an extremal measure).

REMARK. The following facts are easy to check.

(3) If v, p are distinct T-ergodic measures then v L p.
(4) If p is ergodic then it is an extremal measure in M. (The converse
to Lemma 9.4.)

Since M is a compact convex metric space there is a general theorem of
Choquet that says every invariant measure u € M can be written as a con-
ver combination of extremal measures in M. More precisely, we can find a
measure p = p, on the space M (with respect to the Borel sigma-algebra
associated to the weak-star topology) such that

(1) for any function f € C°(X) we have

[ ran= [ ( / fdu) dp(v).

(2) p({v : v is extremal}) = 1.

9.4 Some basic constructions in ergodic theory

In this final section of chapter 9 we shall describe two basic constructions
in ergodic theory.
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9.4.1. Skew products. Let T': X — X be a measure preserving trans-
formation of a probability space (X, B, u). Let (G, B) be a compact Lie group
with the Borel sigma-algebra B. We can consider the product space X x G
with the product sigma-algebra A.

DEFINITION. Given a measure preserving transformation of 7': X — X
and a measurable map ¢ : X — G we define a skew product to be the
transformation S : X x G — X x G defined by S(z,9) = (Tz,¢(x)g).
Given any T-invariant probability measure p we can associate the S-invariant
measure v defined by dv = du x dt.

A simple example is the following.

ExAMPLE. Let T : R/Z — R/Z be given by T(z) = 2 + « (mod 1) for
some @ € R. Let G = R/Z and we define ¢ : R/Z — R/Z by ¢(z) =

z (mod 1) (i.e. the identity map). The associated skew product is then the
map S : R?/Z? — R? /72 given by S(z,y) = (z + o,z + y) (mod 1).

9.4.2. Induced transformations and Rohlin towers. Assume that
T : X — X is a measurable transformation on a measurable space (X, B).
Assume that A C X with A € B.

DEFINITION. The transformation Ty : A — A defined by Ta(z) = T"4 @) g
is called the induced transformation on A. We denote by B4 = {BNA: B €
B} the restriction of the sigma-algebra B to A.

If p is a T-invariant sigma-finite measure on (X,B) and 0 < p(A4) <

oo then we can define a T4-invariant measure g4 on (A, Ba) by pa(B)
r(ANB)
p(A)

ExAMPLE (CONTINUED FRACTION TRANSFORMATION). Consider the case
where (X, B) is the positive half-line R = (0,+0c) with the Borel sigma-
algebra. We define a transformation 7' : Rt — R* by

(1) Tx=z—1ifz € [1,400), and

(2) Tz =1 ifz € (0,1).
We can consider the induced transformation T4 : A — A on the interval
A = (0,1] defined by Tyz = 1 — [1].
1 1

Tog2 JB T4z dz is Ts-invariant.

The measure 4 defined by pa(B) =

REMARK. We need not be too careful about the definition of 7" and Ty
on a countable set of points since they have zero measure.

Consider an (ergodic) transformation 7' : X — X on a probability space
(X, B, 1) and let A € B have u(A) > 0.
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DEFINITION. We can define a space
A" = {(z,k) € AXZT: 0<k<na(z)},

where we identify (z,n4(z)) ~ (T"4(®)z,0), and introduce the product
sigma-algebra B (i.e. the smallest sigma-algebra containing the products
of sets in B4 and Bz+).

We define a probability measure on the space A™4 by v = % (where
dn corresponds to the usual counting measure on ZV).

Finally, we define a transformation T : A™4 — A™4 by

(1) Th*(z, k) = (z,k+1)if 0 < k <na(z), and

(2) Th*(x,na(z)) =Ty* (Taz,0)) = (Tax,1).
This construction is called the Rohlin tower over A.

(N.B. A Rohlin tower is the converse process to induced transformations.
We reproduce the original transformation on X from the induced transfor-
mation on A.) The following lemma tells us the Rohlin tower is a good model
of the original transformation.

LEMMA 9.6. The map ¢ : (A", B,v) — (X,B,p) defined by ¢(z,k)
= T*(x) is measurable and satisfies the following:

(1) ¢ is a bijection (almost everywhere);
(2) VB € B we have that v(¢~'B) = u(B); and
(3) ¢T4* =T¢ (almost everywhere).

PROOF. The result follows almost immediately from the definitions.
[ |

REMARK. The map ¢ is an isomorphism which implies that from the point
of view of ergodic theory the transformations 7' and Tj* are the same.

9.4.3 Natural extensions. Given a non-invertible map 7' : (X, B, 1) —
(X, B, 1) there is a natural way of associating to it an invertible transforma-
tion T : (X B, Q) — (X B, 1) with similar dynamical properties.

We define

X = {(xn)'nEZ"' € H X : T(.’L’n) = Tpn41,M 2 O}
neZt

and associate the sigma-algebra generated by the sets
B, = {($n)nez+ eX: Ly € B} for Be Band me Z™.

We next define a probability measure /i on B by ,u(B ) = p(B). Finally, we
define the (invertible) transformation 7' : X — X by

T(JI(), T1,%2,- - ) = (TJZ(), Lo, L1,L2y - - )
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It is easy to see from the construction that T is measurable and preserves
the probability measure ji.

DEFINITION. We call T : X — X the natural extension of T.

There is a canonical map 7 : X — X defined by 7 ((£n)nez+) = Zo. The
natural extension 7" has the following properties:

(i) T is an extension of T' in the sense that m o T = T o 7; and

(ii) if we denote by Bt C B the sub-sigma-algebra generated by sets
{==Y(B) : B € B} then

L CTIBY CBYCTBT C... C Uyt TVBY = B.

REMARK. In fact, any transformation satisfying (i) and (ii) will be iso-
morphic to the natural extension as we have defined it above [3].

EXAMPLE (SUBSHIFTS OF FINITE TYPE). Let o : X — X be a (one-
sided) subshift of finite type, defined by the k x k matrix A. Relative to a
Markov measure, say, its natural extension is the shift o : X — X.

9.5 Comments and references

More can be found on ergodic measures in [1], [2] and [5].

Important applications of ergodic theory beyond the scope of these notes
are Mostow’s rigidity theorem [4] and the Margulis super-rigidity theorem
[6, §5.1].

The skew product example in subsection 9.4.1 was used by Furstenburg to
give a simple proof of a result on diophantine approximation due to Hardy
and Littlewood [2].
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