CHAPTER 8

MEASURE THEORETIC ENTROPY

In this chapter we shall show how to associate to a measure preserving
transformation an important quantity called the measure theoretic entropy.
This gives important information on the dynamics of the map (cf. Chapter
12) and is useful in classifying measure preserving transformations.

The essential results are contained in sections 8.1-8.3. If one accepts Sinai’s
result on strong generators (Lemma 8.8) without proof then sections 8.4-8.8
will only be required again in chapter 12.

8.1 Partitions and conditional expectations

Let o = {A;}icr be a countable measurable partition of the probability
space (X, B, p), i.e.
(i) X =U;A; (up to a set of zero p-measure), and
(i) A;nA; =0fori+#j (up to a set of zero y-measure).

DEFINITION. We define the information function I(«) : X — R by

1(0)(@) = = Y log u(A:)xa, (@),

ie. I(a)(x) = —logu(4;) if x € A;.

Consider a sub-sigma-algebra A C B; then we can define a measure space
(X, A, p) with respect to the smaller sigma-algebra. For any f € L1(X, B, du)
we can define a measure on the measure space (X, A, 1) by pa(4) = [, fdu,
for A € A. Clearly, pa << p (where u is here defined on A).

DEFINITION. By the Radon-Nikodym theorem there is a unique function
E(flA) := 'ZL—MA € L1(X, A, du) which is called the conditional expectation.

Since in general A is strictly contained in B then E(f|A) may be very
different from f, since it must be measurable on a smaller sigma-algebra.
For example, if A = {X, 0} then E(f|A) is the constant function [ fdp.

The main properties of E(f|.A) are

(1) [LE(flA)dp= [, fdu for all A€ A,

(i) E(f|A) € LY(X, A, dp),
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74 8. MEASURE THEORETIC ENTROPY

(The first two properties are just the definition repeated.),

(iii) if f € LY(X, B, ) and g € L™(X, A, du) then E(fg|A) = gE(f|A),

(iv) if f € LYX,B,p) and Ay, C A; C B then E(E(f|A1)|lA2) =
E(f‘A2)7

(v) if f € LY(X, B, u) then |E(f|A)| < E(|f||A), and if f, g € L*(X, B, du)
and  + 1 =1 then E(|fg[|A) < E(|f|?|A)/7E(|g|?|A)"4,

(vi) If T preserves u then E(f|A)T = E(f o T|T !A), where T"1A =
{T71A: Aec A}.

Parts (iii)-(vi) are a trivial exercise from the definitions (cf. [5, p. 10]).
DEFINITION. Given any sub-sigma-algebra A C B we can define the con-
ditional information function I(a|A): X — R by
I(a]A)(z) = — ) _log (4] A) (z)x 4, (z)
i

where we write pu(A;|A)(z) = E(x4,|A)(x) (called the the conditional mea-
sure).

Assume that we “know” the position of the point z relative to A, then
I(a|A) is an indicator of how much additional information we get from
“knowing” the position of the point z relative to the partition «.

The following properties all come directly from the definition.

LEMMA 8.1.

(1) When A= {0, X} then E(A;|{0, X})(x) = u(A;) and I(a|{0, X })(z) =
I(e)().

(2) IfT : X — X preserves the measure p then I (a|A)(Tx) = I(T'a|T~1A)(x)
(where T™ra = {T71A;}).

(3) If a C A then I(a|A) =0 almost everywhere.

We can associate to each partition « the sigma-algebra & generated by .

DEFINITION. Given two partitions «, # we define their refinement
aVpB={A4;NB;: A; € a, B; € B}.

Given two sigma-algebras A, B we denote by AV B the sigma-algebra gener-
ated by {ANB: A€ a,Be€ S}

The following lemma will prove very useful throughout this chapter.
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LEMMA 8.2 (BASIC IDENTITY FOR INFORMATION). Given partitions o, (3
and a third v with associated sigma-algebra 4 we have that

(o v fA)(z) = I(alBV 9)(@) + I(B17)()
(almost everywhere).

PROOF. Observe that for any function g € Ll(X , B, 1) we have that

fcg
E(g1%)(x) = ) _ xc u(C

Cey

In particular, for B € 8 we can set g(z) = xp(z) and then we get

B nC
W(BR)) = 3 xol@) M 25 mBOC)
Cery
and therefore
BNnC
M@ =~ 3 xenn)log (MBS
Cer,Bep H

The partition 3V « (with elements of the form BN C with B € 5,C € v)
gives that

Iehvi@=— Y xAanc@)log(%). (8.2)

Cevy,BeB, A€

Adding (8.1) and (8.2) gives that

1(8%) (=) + I(alf v B)(x)

Cev,Bep,Aca

= - Z xansnc (@) log <M>

Cev,Bep,Aca

=I(aV B7)(z).
This completes the proof.
[ |

If « and (8 are partitions we write o < 3 if every element of o is a union
of elements of 8. In this case aV 3 = .

COROLLARY 8.2.1. If a < B then I(«a|¥)(z) < I(B|7)(x).
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8.2 The entropy of a partition

DEFINITION. We define the entropy of the partition « by

H(e) = [ 1@)(@)du() = = 3 u(4) g u(4).

A€a

Given a partition « and a sub-sigma-algebra A C B we define the conditional
entropy by H(a|A) = [ I(a]A)(z)du(z).
LEMMA 8.3.
(1) When A={0,X} then H(a|{0, X}) = H(«).
(2) IfT : X — X preserves the measure i then H(a|A) = H(T 'a|TA).
(3) If o C A then H(a|A) = 0.
(4) Given o, v we have H(a|¥) < H(a).

Proor. Parts (1), (2) and (3) follow by integrating the corresponding
results for the information function in Lemma 8.1.
For part (4) we have

Heh == ¥ utancyos(“500)

Aca,Cey 'U(C)
_ w(AN C’ u(ANC)
- CZ@“ AZ ( ) )

< — [ AmC-I [ AmC-‘
<[ & AN e AN

<= u(A)logpu(A) = H(a)

A€a

since for fixed A € o we can bound

,uAﬂC u(ANC)
-y og (M85 ) <= | S utan0) | tog | S utanc)

Cey Cey Cey

using concavity of ¢t — —tlogt. (A more general result appears in Lemma
8.13.)

LEMMA 8.4 (BASIC IDENTITY FOR ENTROPY). Given partitions c, 3 and
a third v with associated sigma-algebra 4 we have that

H(aV Bl7) = H(a|BVA) + H(BA).
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COROLLARY 8.4.1 (“MONOTONICITY” OF ENTROPY FOR PARTITIONS).
Given two partitions o, B with o < 8 we have that H(a|y) < H(B|¥) (and,
in particular H(a) < H(f))

With the next definition, we begin to re-introduce measure preserving
transformations.

DEFINITION. Assume that T : X — X preserves p. Given a partition
a={A;} we write

VT = {A, T A, N---NT~ DA 0 A €a,i=0,...,n—1}.

NOTATIONAL COMMENT. Frequently it proves convenient to drop the cir-
cumflex (hat) over 4. Thus if we write H(«|f3), say, we understand this to
mean H(«|f).

For n > 1 we can write H,(a) = H(V?_)Ta). By the above estimates
we have that
Hyim(a) = H (VT a)
=H (V)T 'a) + H(VIE" T a| Vi) T a)
< H (ViTia) + 1 (VP17 %)
=H,(o) + Hn(a).

Thus the sequence H, (), n > 1, is subadditive (which shows that the limit
in the following definition exists).

(8.3)

DEFINITION. We define the entropy of the partition « relative to the trans-
formation T': X — X as the limit A(T, o) = limy, 4 H(a)

n

Notice that in particular from (8.3) we have that 0 < h(T,a) < H(a).
The following result gives an equivalent characterization.

PROPOSITION 8.5 (ALTERNATIVE DEFINITION OF A(T, @)).
_ : n—1 mp—i
T, a) = nll)rfoo H(a|VIZ] T ).

(N.B. Sometimes it is convenient to write this limit as H(a| V2, T 'a).)

Proor. Using Lemma 8.4 we see that
H\V?)T ) = H(a| VI T7) + H(VIZT )
= H(a| V] 1 L T7%) + H(a| VIZ2 T a) + HVI 2T "a)

=Y H(a| ViZ T™%0) + H(a).
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We then see that

1 . ,
lim —~HNV!ZyT "a) = lim H(a| VI T ')

n—+oo N n—-+oo

as required (since if a,, — a for any sequence of real numbers then W —

a).
[

The entropy of the transformation relative to two different partitions is
described by the following inequality.

LEMMA 8.6. For finite entropy partitions o, B of X we have that
W(T, a) < h(T, B) + H(alB).

PROOF. Since (VIZJTa) V (VI T~*6) > VI, T *a we have that
H (ViZ)T) < H (Vi) T ) v (Vi T76))
= H (ViZgT7'8) + H (V5 T™"a| ViZy T°B)

(where we use Lemma 8.4, with v being the trivial partition, for the last
line). We next estimate

H (VI T el VIiZ, T7B)
=H (a| V?z_ol T_iﬂ) +H (V?=_11T_i0‘|a Vv (V?;olT_iﬁ))
< H(alf) + H (Vi T o VIS T70)
< H(a|f)+ H (VIgT ‘al VIZZ T7'B).
Proceeding inductively gives us
H (VI T a| ViZ, T*8) < nH(a|p).
Finally, we see that

1 : 1 .
~H (VP T "a) < ~H (ViZg T7'8) + H(lB).

Letting n — 400 gives the correct inequality.
[ |

COROLLARY 8.6.1. For finite entropy partitions o, B of X we have that

|W(T, B) — (T, )| < H(Bl|a) + H(c|B).

PROOF. By interchanging o and 8 in Lemma 8.6 we get that h(T,3) <
h(T, o)+ H(B|a).
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8.3 The entropy of a transformation

Consider a measure preserving transformation 7' : X — X on a probability
space (X, B, 1). We want to associate to this a numerical invariant. We start
from the definition of the entropy relative to a partition @ and then remove
the dependence on « by taking a supremum.

DEFINITION. We define the measure theoretic entropy of T : X — X for
the probability space (X, B, p) by hy(T) = sup{q. 1 (a)<+o0} P(Ts ).

We write the measure p as a subscript not only to remind us that there
is an ambient measure, but also to distinguish the notation from that of
topological entropy in chapter 3.

As one might imagine, it can be very difficult to compute the measure
theoretic entropy from the definition given. We now want to describe a very
important method of practical computation. We begin with a result which
replaces the supremum in the definition of the measure theoretic entropy
with a limit.

LEMMA 8.7 (ABRAMOV). Let 81 C B2 C ... C Bx C B be an increasing
sequence of partitions with H(fB) < +oo, Yk > 1; and such that Uy,
generates the sigma-algebra B. Then hy,(T) = limg_, 4o h(T, Br)-

We shall return to the proof in section 8.7.

The following definition gives us a way to generate the increasing parti-
tions.

DEFINITION. We say that a partition o with H(a) < +oco is called a
strong generator for the probability space (X, B, i) if V32, T 'a = B.

If T is invertible, then we say that a partition a with H(«) < 400 is called
a generator for the probability space (X, B, u) if vi2_ T ‘o =B

1=—00

LEMMA 8.8 (SINAIL). If a is a (strong) generator then h,(T) = h(T, a).

We shall return to the proof in section 8.7. Before developing the theory
needed to prove these two results we shall use them to compute the measure
theoretic entropy of some simple examples.

Example 1 (doubling map). Let X = R/Z, B denote the Borel sigma-
algebra, and p the Haar-Lebesgue measure. We let T' : X — X be the
doubling map T'(z) = 2z (mod 1). Let o = {[0, 1), [3,1)}; then observe that

oo {p2) [12)-[2) )
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and more generally,

| o
v?;olT_’a:{{Zin,%) :i:O,...,2"—1}.

. Z <[ ) os ([0
(4 >mg< )

Thus we see that 2H(VP'T~%a) = log2 and thus letting n — +oo gives
that h,(T) = log 2.

H(\V''T )

= nlog?2.

Example 2 (rotations on the circle). Let X = R/Z, let B denote
the Borel sigma-algebra, and let 4 be the Haar-Lebesgue measure. We let
T : X — X be the rotation T(z) = z + a (mod 1) for some fixed values
a R

First assume that a = q is a rational number. For any partition 3 we see

that 7798 = 3. Thus
Vi T 8= Vi;T~"8

and so in particular

hu(T,B) = lim i]—_] (\/nq lp —kﬂ>

n—-+oo qn
1
_ _ q—1 —k:
= Jim ot (Vi 0)
=0.

Thus the measure theoretic entropy of any partition is zero, and thus the mea-
sure theoretic entropy of the transformation, h,(T') = sup g(gy<4oo MT, B) =
0.

Next, assume that a is irrational. We let 8 = {[0,3),[3,1)}. Since the
sequence 3 + na (mod 1) is dense in the unit circle (Weyl’s theorem) we

see that the partition is (strong) generating. Moreover, we see that B =
Ve T~k3. As we observed before

WT,B) = lim H(B|ViZy T™"B) =0
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and therefore h,(T) = h(T, 3) = 0.
As one might imagine, a similar method applies to rotation on tori R" /Z",
n > 2.

Example 3 (Markov measures). Let 0 : X — X denote a subshift of
finite type

+00
X ={(xn) € [[{L,--- k} : Appa,,, =1}

where A = (A;;) is a k x k matrix with entries either zero or unity.

We associate to this a k x k stochastic matrix P = (P;;) (cf. Example 4
in section 7.3) and let p = (p1,...,pr) be the left eigenvector associated to
the left eigenvalue unity.

The partition o = {[1],...[k]} for X is generating. Let 0 : X — X
denote the shift transformation. The refined partition Vi_;T~*« consists of
“cylinder” sets of the form

(205 -+ s Zn—1] = {(Tn)nez € X : 7, = 2;,0<i<n—1}

where z; € {1,...,k}.
By the definition of the Markov measure p associated to P we have that

p([20, -+ s 2n-1]) = PagProzy Poyzy - - - Po gz -
We explicitly compute:
H(VpZyT™ )
=— > w20 zmo1])log (20, .. 2n-1))

[20,...,,3"_1]

== Z ProProzi Poizs - Pry sz 1108 (D2 Prozy Poros - - - Pry 220 1)
[20,...,Zn_1]

= - Z p20P2021P2122 cr Pzn—2zn—1 (logpzo + logpzozl + 10gPZ122
[Z(),...,Zn_l]

+logP,, s +...+10gP, _,. )

k 2
= pilogp;—(n—1) Y piP;log Py
=1

ij=1

(where we use that pP = p and P is stochastic).
Therefore we see that

k
1
ha(T) = lim —H(Vi 3T "a) =~ )  piPijlog P;.

n—-+4oo N i1
1,)=
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In the special case that X = X; = [[F{1,...,k} we can define a
“Bernoulli measure” from a probability vector (pq,...,px) (i.e. (p1+...+
pr = 1) by

,u([ZOa e Zn—l]) = PzyPz1Pzy -+ -Pzpp_1-
The measure theoretic entropy in this case is h,(T) = Zle pi log p;. For
example, where X = X, and p = (3, 1) we have that h,(T) = log2. Where
X = X; and p = (3, 3, 1) we have that h,(T) = log3, etc.
8.4 The increasing martingale theorem

We now begin to develop some of the machinery need to prove the results
in section 8.3.

We know that if f € L1(X,B, ) and A C B is a sub-sigma-algebra then
we can associate the conditional expectation E(f|A) € L'(X, A, ). The
increasing martingale theorem describes how E(f|.A) depends on the sigma-
algebra A. This is crucial in understanding the corresponding behaviour of
the information function and thus the measure theoretic entropy.

The following simple lemma is very useful.

LEMMA 8.9. If (X, B, ) is a probability space and if By C By C ... C
By C B are sigma-algebras and X > 0 then if we let

E={zeX: 1ér:lanNE(f|l$’n)(ac) > A}

then we have the upper bound on its measure p(E) < I [|f|dp with f €
LY(X, B, ).

PRrROOF. Without loss of generality we can assume that f > 0 (otherwise
we replace f by max{f(z),0}). We can partition £ = F; U...U Ex where

E,={ze X : E(f|By)(z) >\ E(f|B)(xz) <\,i=1,2,...,n—1}
(and observe that E,, € B,,); then E; N E; = () for ¢ # j. We then write

/E fin=3 /E =3 /E BB Do NulEn) = N9,

Thus u(E) < + [ fdp =5 [ |f|dp.
n

REMARK. This is very similar to the Chebyshev inequality for f € L'(X,
B, 1) and A > 0 which says that u{x € X : f(z) > A} < %.

This brings us to the main result of this section.
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THEOREM 8.10 (INCREASING MARTINGALE THEOREM). Let f € L'(X,
B, ). Assume that By C Ba C ... C B, C ... C B is an increasing sequence
of sigma-algebras and that the union UJ2 1Bn generates B (written B, —
B). Then E(f|B,) — f in L'(X,B, ,u) and E(f|B,)(xz) — f(x), almost

everywhere.

PROOF. The theorem is clearly true on the subspace U L' (X, By, u)
since if g € LY(X,Bg,p) then E(g|B,) = g for n > k. Moreover, this
subspace is dense in L'(X, B, 1) in the L' norm.

Given an arbitrary f € L(X, B, i) we can choose € > 0 and g € L'(X, By,
1), say, with [ |f — g|du < e. We then see that for any n > k we have that

/ B(f|By) - fldu
< / \E(f|B,) — E(g|Ba)|dp + / E(g|Ba) — gldu + / 9~ fldu
<2 / 19— fldp

(where [ |E(g|By)—g|dp = 0 since E(g|B,) = g and we use that E(.|B,) is a
contraction on L(X, B, p)). In particular, limsup,,_, o, [ |[E(f|Bn)—fldp <
2¢. Since € > 0 is arbitrary, we see that we have L' convergence.

To show that we also have almost everywhere convergence, we argue as
follows:

p{x € X : limsup |E(f|B,)(z) — f(z)| > 61/2}

n—+oo
<z € X o limsup(|E((f = 9)[Ba) (@) = (f = 9)(@)
+ |E(91Bn) (2) = g(2)]) > €'/%}
<z € X limsup |B((f = 9)|Bn) ()| +|(f = 9)(=)] > ¢/}

n—-+oo

<p{reX: hmsup|E((f 9)|Bn )(a;)\> 1/2}

n—-+4o00

+u{z € X [(f—9)(@) > 5 L2y

1
<2(1 1/2)/” g|dﬂ<2( %)€§461/2

(where we have used Lemma 8.9 and the Chebyshev inequality). Since € > 0
is arbitrary this shows almost everywhere convergence.

REMARK. There is a corresponding “decreasing martingale theorem”, but
we shall not need it.
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8.5 Entropy and sigma-algebras

We want to apply the increasing martingale theorem to the information
functions. First we need a simple technical lemma.

LEMMA 8.11. If o is a partition with H(a) < 400 and we have sub-
sigma-algebras Ay C As C ... C B then

[ (sup @) du < (@) + 1

n>1

(and, in particular, f(x) = sup,s; I(alAn)(z) € LY(X,B,p)).

PRrROOF. We can write
[ r@inta) = / " F()de (8.4)

where F(t) = p{x € X : f(x) > t}, provided the right hand side of (8.1) is
finite.
We can write

Fit)=p{re X : Sup I(a|Ay)(z) > t}

:,u{a:EX: sup( ZXA )log u(A|Ay) (z ))>t}

n>1 Aca

= Z L (A N{reX: il;}; (—log (Al AL) (z)) > t})

A€ca

(since the sets A are disjoint). However, we can simplify this by writing

{zeX: Sup (—log u(A|An)(2)) > t}

={zeX: inf (o u(Al4,) (@) < ~t}

= {re X : inf (4(A14)@) < e} = Unz1 4

where A, = {z € X : p(4]|A4,)(z) < et and p(A|A4;)(z) > et fori =

1,...,n — 1} are disjoint sets. If we write
Y AN Und) = 3 S w4 4,)
A€a Acan>1

then we can use the estimates

,u(AﬂAn):/ XAd,u:/ E(XA|An)d,u§/ e tdp = e tu(Ay,).
A, A,

n
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We now have two possible upper bounds on the same summation:

ZﬂAﬂAn)<Ze p(Ap)=e* and D u(ANAg) < p(A).

n>1 n>1
Therefore F(t) < 3 4., min{e™*, u(A)}. Finally, we can use this bound to

estimate
/OOOF dt</ (me{e i )})dt

A€a
=— )1o h e td
% ( g'u’ ) \/—log p(A) t)
== (u(A)log u(A) — u(A))
A€a
= H(a) + 1.

[ |
We are now in a position to prove the following crucial result.

THEOREM 8.12. If a is a partition with H(a) < 400 and Ay C Ay C
... = B is an increasing sequence of sub-sigma-algebra then I(a|Ay)(x) —
I(a|B)(z) almost everywhere and in L'. Thus H(a|Ay,) — H(a|B) asn —
+00.

ProOF. By Theorem 8.10 u(A|A,) — u(A|B) almost everywhere, for any
A € . This implies that I(«|Ay)(x) — I(«|B)(x) almost everywhere.

By Lemma 8.11 we have that I(«|A,) are dominated by the integrable
function sup,,~; I(@|A,)(z). Thus by Lebesgue’s dominated convergence
theorem we have that I(a|Ay,)(z) — I(a|B)(z) in L' (ie. [ |[I(a]An)(z) —
I(c|B)(z)|dp(z) — 0 as n — +00).

Integrating shows the corresponding result for measure theoretic entropy
i.e. H(a|Ay)(z) — H(a|B)(z) as n — +oo.

|

Using Theorem 8.12 we can extend the basic identities (Lemma 8.2 and
Lemma 8.4) to arbitrary sub-sigma-algebras C C B, i.e.

(1) for the information functions
I(av BIC) = I(alB v C) + I(BIC)
(and, in particular, I(«|C) > I(B8|C) if a > ),
(2) for the measure theoretic entropy
H,(aVBIC) = H,(a|BVC) + h,(BIC)
(and, in particular, H,(a|C) > H,(B|C) if a > ).
This only requires that we choose partitions v such that 4 — C and apply
the theorem (and this is a basic property of Lebesgue spaces).
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8.6 Conditional entropy

We want to consider how changing the sigma-algebra (with the same parti-
tion) affects the conditional measure theoretic entropy. The following lemmas
are useful.

LEMMA 8.13. Assume that f € LY(X,B,p) and 0 < f(z) <1 a.e. and
that A C B is a sub-sigma-algebra. Let v : [0,1] — R be a concave function

(i-e. P(az+(1-a)y) = ap(z)+(1-a)i(y)); then p(E(f|A)) = E(P(f)[A)).

PROOF. First consider the case of simple functions f(z) = > ., b;xs,,
where {B,...,B,} is a partition for X.
By linearity of E(.|.A),

E(flA)(z ZbEXB A)(z szﬂBM

=1

and observe that Y ., u(B;]A)(z) = 1. We can compute
P (E(f1A) > (b u(BilA) = Zw )xB,|A) = E(p(f)A). (8.5)
=1

For an arbitrary function f € LY(X,B,u) we can choose a monotonically
increasing sequence of step functions fj increasing to f a.e. Since E(-|.A)
takes positive functions to positive functions we see that E(fx|A) — E(f|.A).
We can now take limits in (8.5) to get that ¢ (E(f|A)) > E(¢¥(f).A), as
required.

[

The following is a simple application of this result.

PROPOSITION 8.14. If B is a partition and As C Ay C B are sub-sigma-
algebras then H(B|A1) < H(B|As2).

(The corresponding result for information functions may not be true).

PRrROOF. For each B € [ we fix the choice f = pu(B|A;). We then fix
P(t) = —tlog(t) for 0 < t <1 (and ¥(0) = 0). We then have that ¢(f) =
—u(B|A;p)log (1(B|.A1)) and the lemma (Jenson’s inequality) gives that

—E (u(B| A1) log (1(B| A1) |A2) < —p(B|Az2) log u( B Ay).

Integrating both sides with respect to p (and summing over B € f3) gives
that H(B|A1) < H(B|A2).
[ |
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8.7 Proofs of Lemma 8.7 and Lemma 8.8

We can now use the results from the preceding sections to supply the
omitted proofs of Lemmas 8.7 and 8.8.

PROOF OF LEMMA 8.7. We know that A(T, 8,) < h(T, By) + H(Bn|fm)
for n,m > 1. Moreover, if m > n then 8, C G, and so H((3,|8m) = 0. Thus
h(T, 3,) is monotonically decreasing and so converges.

For any partition o with H(a) < +oo we can start with the inequality
h(T, o) < hy,(T, Bn) + H(|Bn) (proved in a previous lemma). By a corollary
to the increasing martingale theorem we know that H(«|8,) — H(a|B) =0
(since a C B). We conclude that

h(T, o) < limsup h(T, 5,).

n—-+oo

Taking the supremum over all such « gives that

hy(T) =sup h(T,a) < lim k(T By).

n—-+oo

Clearly, h,(T') > h(T, ) for n > 1. Thus

n—-+oo

hy(T) > sup h(T, 3,) > lim h(T, By)

and the proof is complete.
[ |

Before moving on to the proof of Lemma 8.8, we recall the following useful
fact.

A FACT ABOUT LEBESGUE SPACES. For Lebesgue spaces a necessary and
sufficient condition for (3, — B is that there exists a set of zero measure
N C X such that for z,y € X — N (with z # y) there exist n > 1 and
B € 3, such that x € B but y ¢ B.

PrROOF OF LEMMA 8.8. This is an application of Abramov’s result where
we take 3, = VI__ T %«a or 3, = VP T ‘«, as appropriate. We then have
that ,

hT, Be) = H(Bk| V21 T Br)

— H(VAZIT o] v, Ta)
= h(T, @)

and we need only let £k — +o0.
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8.8 Isomorphism

Entropy is very important in the classification of measure preserving trans-
formations. We begin with a definition.

DerFINITION. Let (X;, B;, i), for i = 1,2, be probability spaces; then an
isomorphism between measure preserving transformations 77 : X; — X; and
Ty : Xo — Xy is amap ¢ : X1 — Xy such that

(1) ¢isa bijection (after removing sets of zero measure, if necessary),
(2) both qb and ¢! are measurable (i.e. ¢~ 1B, C By and ¢B; C Bs),

(3) pu1(¢~'B) = ua(B) for B € By (also uz(¢B) = p1(B) for B € By),
(4) poTy =T50 gb

THEOREM 8.15. FEntropy is an isomorphism invariant (i.e. if Ty : X; —
X1 and Ty : Xy — Xy are isomorphic then hy, (T1) = hy,, (T2)).

PROOF. Let a be a partition for X»; then clearly ¢ 1o = {¢71(A) : A€
a} is a partition for X;. Moreover, the properties for ¢ imply that

1 Ry |
~H (Vi Ty ba) = ~H (Vi T "9 ).

Letting n — +oc gives that hy, (T1, ¢~ 'a) = hy, (T, @). Taking the supre-
mum over all partitions « (with H(a) < +00) gives the result.
|

EXAMPLE (BERNOULLI SHIFTS). Using the formula for the entropy of a
Bernoulli measure from section 8.3 we see that the shifts

{ o : [hez{l,2} = [1,ez{1, 2} with probability vector (3, 3)

1
y 9 )
o : [1ez{1,2} = [1,ez{1, 2,3} with probability vector (3, 3, 3)

have entropies log2 and log 3, respectively. Therefore they are not isomor-
phic.

W=

REMARK. Let us consider a slightly different situation where we drop the
assumption that ¢ is a bijection. That is, if we consider (X;, B;, u;), for
1 = 1,2, to be probability spaces then a factor map between T : X; — X3
and Ty : X9 — X4 satisfies

(1) ¢(X1) is equal to Xo (after removing a set of zero ps-measure, if
necessary),
(2) ¢ is measurable,
(3) p1(¢~1B) = uz(B) for B € By,
(4) poTy =T 0¢.
In this case it is easy to see that h,(T1) > h,(T3).
We usually say that T is an extension of Ty or that Ty is an factor of Tj.
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8.9 Comments and references

Our development of entropy has followed the lines of Parry’s treatment in
[2]. It is possible to reduce some of the analysis if we accept working only
with countable sigma-algebras [5].

References for some more advanced topics we have omitted include [3, §7.5]
(Krieger’s generator theorem), [3, §7.6] (Ornstein’s isomorphism theorem),
and [1, §10.7] (Keane-Smorodinsky finitary Isomorphism Theorem).
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