CHAPTER 6

ROTATION NUMBERS

In this chapter we shall define the useful concept of the rotation number
for orientation preserving homeomorphisms of the circle.

6.1 Homeomorphisms of the circle and rotation numbers

Let T : R/Z — R/Z be an orientation preserving homeomorphism of
the circle to itself. There is a canonical projection m : R — R/Z given by
m(z) = z (mod 1). We call a monotone map 7' : R — R a lift of T if the
canonical projection 7 : R — R/Z is a semi-conjugacy (i.e. moT =T o).

For a given map T : R/Z — R/Z a lift 7' : R — R will not be unique.

ExAMPLE. If T(z) = (z + «) (mod 1) then for any k¥ € Z the map
T : R — R defined by T'(z) = x + a + k is a lift. To see this observe that
©(T(z)) =7m(z+a+k) =z +a (mod 1) and T(r(z)) = 7(z) + a(mod 1) =
z + « (mod 1).

The following lemma summarizes some simple properties of lifts.

LEMMA 6.1.

(i) Let T : R/Z — R/Z be a homeomorphism of the circle; then if T :
R — R s a lift, then any other lift T : R — R must be of the form
T'(x) = T'(x) + k, for some k € Z.

(i) For any z,y € R with |z—y| < k (k € Zt) we have |T(z)—T(y)| < k.
Iterating this gives that

A

T™(z) — T™(y)| < k, Vn >0.

PROOF. These are easily seen from the continuity and the monotonicity
of T.
[ |

DEFINITION. We define the rotation number p(T') of the homeomorphism
by

p(T) = limsup "(z) (mod 1).

n—+oo n
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(The limsup is independent of the choice z € R by Lemma 6.1. The choice
of lift T' can only alter the limsup by an integer, which has no bearing since
we define p(T') modulo one.)

EXAMPLE. Consider the standard rotation R, : R/Z — R/Z defined by
R,(z) = x4 p (mod 1), where p € [0,1), say. Any lift R, : R — R will be of
the form R,(zx) = = + p + k, for some k € Z i.e. translation on the real line
by p+ k. It is now immediate from the definition that the rotation number
for R, is merely p (mod 1).

We can now show some interesting properties of p(T).

PROPOSITION 6.2.

(i) Forn > 1 we have that p(T™) = np(T)(mod 1).
(ii) If T has a periodic point (i.e. In > 1,3z € R/Z such that T"z = z)
then p(T) is rational.
(iii) If T : R/Z — R/Z has no periodic points then p(T) is irrational.
(iv) The limit actually exists and we can write

p(T) = lim 7" (z)

n—-+oo n

(mod 1).

PROOF. (i) Since 7™ (the n th iterate of the lift 7" for T) is itself a lift for
T™ : R/Z — R/Z this is immediate from the definitions.

(i) Since T™(z+Z) = x+Z we have that 7™ (z) and z differ by an integer
(i.e. T"(z) —x = k € Z). Then for pn +r with 0 <7 <n —1 and p > 0 we
have that TP+ (z) = T (TP"z) = T" () + pk because of Lemma 6.1. Thus

p(T) = limsup, , , TI::;SC) = £ (mod 1).

(iii) Assume for contradiction that p(T) = £ is rational. By part (i) we
see that for S := T'? we have p(S) = 0 and since T has no periodic points we
conclude that S : R/Z — R/Z has no fixed points.

If $: R — R is a lift for S then the absence of fixed points for S implies
either S(z) > =, Vz € R, or $(z) < z, Vo € R. Assume S(z) > z, Vz € R
(the other case being similar), i.e. S is strictly increasing. If 3k > 0 with

S%(0) > 1 then we see that S™*(0) > m and so

o .
p(S) = limsup 5"(z) > -,
n—-+oo n k

contradicting that p(S) = 0. This leaves the possibility that S*(0) < 1 for
all k> 1. Since S is strictly increasing the sequence (S*¥(0))$°; is monotone
increasing and the supremum z € R satisfies S(z) = z. Thus S has a fixed
point S(z + Z) = z + Z, giving a contradiction.
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(iv) If T has a periodic point 7"z = x then the argument in part (i)

actually shows that p(T) = limy_ 10 Tl\]’\;m) = % (mod 1), in particular,

n
showing that the limit exists.
Assume that T : R/Z — R/Z has no periodic points. Thus for all n > 1
there exists k, € Z such that T"(x) — z € [kn,kn + 1] , Vz € R, and, in

™) _

particular, observe that | %"| < % Then, for any m > 1 we have that

T (0) = 1 (T (0) ) - (T (0))
+Pm (T"<m—2>(o)) - (T"<m—2> (o)) Yo (6.1)

o T T(0) = (T7(0)) + T7(0) € [k, m(kn + 1))

In particular, we see from (6.1) that |w — En| < L The triangle in-
equality gives that
L) 1), IO ke ke T0),
m n o m m m mn
T™(0)  kyp k., T™(0)
P Eayf 17O
mn n n n
2 2
< —+-=
mn

0)\>* . . .
- is Cauchy, and in particular the

which shows that the sequence
=0

3

limit exists.
[ |

The next lemma and its corollary will be useful later.

LEMMA 6.3. Assume that p is irrational.
(i) Let ni,n2,my,mo € Z and z,y € R. Ifff’”l () +my < T2 () + ma
then T™ (y) + my < T™ (y) +mg;
(ii) The bijection np(T) +m — T™(0) + m between the sets

Q= {np(T) +m: n,m € Z} and A = {T™(0) + m: n,m € Z}

preserves the natural ordering on R.

ProOOF. (i) If 3z, y € R for which the ordering is reversed, then by conti-
nuity (and the intermediate value theorem) there exists z € R with 77 (z) +
my = T™ (2)4+mg, ie. T™ (2)—T™ (z) € Z. But then T™ ™ (2+Z) = z+7Z
is a periodic point. This contradicts the assumption that 7' has irrational
rotation number (and so no periodic points by Proposition 6.2 (ii)).
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(ii) Assume that 7™ (0) +mq < T™(0) + my with nq > ny; then we wish
to show that nip + m; < ngp + mg. We can rewrite the first inequality as
Trmi—n2 (Tm20) —T™20 < (mg —m4) and we can apply part (i) with z = 7720
and y = 0 to deduce that

Tnl—nz (O) < (m2 — ml). (62)

Next, we can apply part (i) to (6.2) with the choices z = 7™ ~"2(0) and
y = 0 to deduce

T2("1—"2)(0) _ Tm—nz (0) — Tm—m (Tnl—ng 0) . Tnl—m (0)

6.3
< (mg —my). (6:3)

Comparing (6.2) and (6.3) gives that T2("1=72)(0) < 2(my—my). Proceeding
inductively shows that for any N > 1 we have TV (™1—"2)(0) < N(mg — m1).
Finally, we see that

A

77 (0 TN(ni-n2)(( _
o) = tim 2@ gy ©) _ (mz = mi)
n—-+4oo n N—>+o0 N(n1 — nz) (n1 — ng)
and in fact p < 2™ gince p is assumed irrational. This is the required

(n1—n2)
inequality, and so this completes the proof.

COROLLARY 6.3.1. Let T : R/Z — R/Z have irrational rotation number
p. For anyx € R/Z the orbits of x under T and the rotation R, : R/Z — R/7Z
have the same ordering.

ProOOF. This follows immediately from part (ii) of Lemma 6.3, since a
difference in the ordering of 7" (z) and R} (x) would contradict the conclusion
of the lemma.

6.2 Denjoy’s theorem

The following result gives a sufficient condition for a homeomorphism to
be conjugate to a rotation.

PROPOSITION 6.4. IfT : R/Z — R/Z is a minimal orientation preserving
homeomorphism with irrational rotation number p then T is topologically
conjugate to the standard rotation R, : R/Z — R/Z.

PROOF. Let 7' : R — R be a lift of T : R/Z — R/Z. Observe that since
p is irrational we have that Q C R (as defined in Lemma 6.3 (ii)) is dense.
Moreover, since T is minimal we know that {70} is dense in R/Z, and so
we also have that A C R is dense.
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The map ¢ : A — Q given by qS(T” (0) + m) = np + m is order preserving
by Lemma 6.3. Thus it extends to a homeomorphism ¢ : R — R.
Observe that

é (T(T”(o) + m)) - (:fmﬂ(o) + m)) =(n+1)p+m

and
Rpp(T™(0) +m) = Ry(np+m) = (n+1)p+m

where ]A{p : R — R is a lift for R,. Thus qSoT = Rp o .

Finally, we observe that by construction ¢(z + 1) = ¢(z) + 1. Thus the
homeomorpism ¢ : R/Z — R/Z defined by ¢(z + Z) = ¢(z) + Z is well-
defined. Moreover, the identity gbO’f’ = Rp o ¢ implies the conjugacy relation

¢poT = R, o0 ¢. This completes the proof of the proposition.
[ |

Given a C! map T : R/Z — R/Z we consider its derivative 7" : R/Z — R.

DEFINITION. We define the variation of log |T"| : R/Z — R by
Var(log |T"|)

n—1
=Sup{Z|log|T'|<a:i+1> —log |T'|(zi)] : 0=y <21 < ... <ap = 1}.
=0

We say that the logarithm of |T”| has bounded variation if this value Var(log
|T"|) is finite.

It is easy to see that if T : R/Z — R/Z is C? with |T"|/|T'| is bounded
then Var(log|T"|) is finite.

We now come to the main result of this section which gives sufficient
conditions for a homeomorphism to be conjugate to a rotation (and are more
readily checked than those of Proposition 6.4).

THEOREM 6.5 (DENJOY’S THEOREM). If T : R/Z — R/Z is a C' ori-
entation preserving homeomorphim of the circle with derivative of bounded
variation and irrational rotation number p = p(T) then T : R/Z — R/Z is
topologically conjugate to the standard rotation R, : R/Z — R/Z.

ProoOF. It suffices to show that T is minimal, then the result follows
by applying Proposition 6.4. The proof of minimality will come via two
sublemmas.
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SUBLEMMA 6.5.1. If T' has irrational rotation number and there are a
constant C' > 0 and a sequence of integers q, — —+0o such that the maps
T :R/Z — R/Z satisfy

|(T9) ()| - [(T~") (2)| = C

then T : R/Z — R/Z is minimal.

Proor. If T is not minimal we may choose z € R/Z such that ¥ =
cl(UnezT"z) # X. We can choose a (maximal) interval Iy C X — Y’ then
we claim that I, := T~"Iy C X — Y are distinct (maximal) intervals. To
see this we observe that by maximality Iy must be of the form Iy = (a,b)
(with a,b € Y). Thus I, = (T~ "a,T~"b) and if I, N I,,, # () then again by
maximality I,, = I,,, and, in particular, T~"a = T~™a. But if n # m then
this means a is a periodic point, which contradicts 7" having an irrational
rotation number (by Lemma 6.1 (ii)).

If |I,,| denotes the length of the interval I,,, n € Z, then by the disjointness
we see that ) ., |I,| < 1. In particular, [I,| — 0 as n — +oo0.

However, we see that for all n > 1,

L+ Vg, = [ (@Y @)+ @) @) do

> / /(T ()] (T~ (z)))
> 207 |I|

D=

dx

(since arithmetic averages are larger than geometric averages). This contra-

dicts |I,| — 0, and so completes the proof of the sublemma.
[ |

To make use of the assumption of the bounded variation of log |T”| we
need a second sublemma.

SUBLEMMA 6.5.2. Fiz z € R/Z and write x,, = T"(x), for n € Z. There
exists an increasing sequence ¢, — +0o of natural numbers such that the
intervals

(',EO’ ',I;Q'n)’ (',I;]-’ :L'qn_*']-)’ ($2’ '/qun+2)’ st (.fL'Z, :L'qn+i)’ ctt ($Qn’ :L'2Qn)

are all disjoint.

PRrROOF. By Corollary 6.3.1 we see that the order on R/Z of points in the
orbit of T : R/Z — R/Z is the same as that of the rotation R, : R/Z — R/Z.
Thus it suffices to prove this sublemma with R, rather than T'.

For each n > 1 we want to choose the sequence ¢, to correspond to
the successive nearest approaches of {T™z} to z (i.e. [Tz — x| = 6, =
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inf{|T9z —z|: 1 < j < ¢, — 1}). Consider a typical interval (z;,z,,+:),
0 < ¢ < gy, (the case (x4, +i, z;) being similar) and assume for a contradiction
that there exists =, € (zi,2q,+i), 0 <7 < 2gy, . There are two cases.

(a) Firstly, assume that r < i. We then know that
zo = R,"(z,) € R, (%, Tq,+i) = (T(i—r)> Tgp+(i—r))-

In particular, |z;—, — 20| < |Zq,4(i—r) — T(-r)| = |Tq, — To| = In.
But since ¢, > (¢ — r) > 0 this contradicts the definition of g¢,,.
(b) Secondly, assume that r > i. We then know that

Tr—i = R;i(xT) € R;i(xiﬂan-l-i) = (%0, %q,,)

and so we see that r — i > ¢, (from the definition of ¢,). But
then z(,_;_q, = Ry (z,—;) € Ry (20,2q,) = (T—g,,To) and, in
particular, | _;)_q, — Zo| < |T_g, —To| = |RI*(x_g,) — BRI (z0)| =
\zg — x4, = 0p. Since 0 < (r — i) — gp < @, this contradicts the
definition of g,,.

This completes the proof of the sublemma.
[ |

Since the intervals in Sublemma 6.5.2 are disjoint we have for any n > 1

dn

Var(log [7']) > > [log |T" (z:)| — log |T" (4, +:)|
=0

dn dn
> > log |T'(z;)| = Y log |T'(l'qn+i)|‘
=0 1=0

- . N 4
= |log ( im0 |T'(T*)| )‘ (6.4)
o 1T (T, )|

o (1@ (o)
= g(|<T%>'<an>\)
= [log [(T%)' (z4,) (T~ (2, )|

(where by the chain rule (T=%)'(z,, )(T%)'(z¢) = 1). Since this holds for
arbitrary x the point z,, can be replaced by an arbitrary point on the circle.
If we take the exponential in identity (6.4) then Theorem 6.5 now follows
from Sublemma 6.5.1 and 6.4.

REMARK. We should remark that the assumption that log 7’ has bounded
variation is necessary. If we relax this assumption then we have that 7" may
be merely semi-conjugate to the rotation R,,.
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6.3 Comments and references

Some basic results about rotation numbers can be found in [2, pp. 102-

108], [5, chapter 12] and [1].

The question of when the conjugating map is differentiable is subtler

(ct.[4], [3], [9] and [6], [7], [8] for variants).

[N
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