CHAPTER 2

AN APPLICATION OF RECURRENCE
TO ARITHMETIC PROGRESSIONS

In this chapter we shall describe a particularly nice application of the
recurrence ideas from chapter 1 to a result in number theory.
2.1 Van der Waerden’s theorem
We begin with a simple idea from number theory.

DEFINITION. An arithmetic progression is a sequence of integers
{a + jb}) for a,b € Z (b # 0), N > 1. We call N the length of the
arithmetic progression.

EXAMPLES.

(1) The sequence 10,13, 16,19, 22 is an arithmetic progression with a =
10,b=3,N = 5.

(2) The sequence —4,0, 4, 8 is an arithmetic progression with a = —4,b =
4 N = 4.

Consider a partition of the integers Z = B; U ...U B; where
(ii) BinBj =0 for i # j.
The main result we want to prove is the following.

THEOREM 2.1 (VAN DER WAERDEN). Consider a finite partition 7 =
B1U...UBy. At least one element B, in the partition will contain arithmetic
progressions of arbitrary length (i.e. 31 <r <k,VN >0, Ja,be Z (b # 0)
such that a + jb € B, for j =0,... ,N —1).

Since an arithmetic progression of length N contains arithmetic progres-
sions of all shorter lengths, this is equivalent to: dN; — +o0, da;, b; € Z
such that a; + jb; € B, for j =0,...,N; — 1.

We give below some simple examples.

EXAMPLES.

(1) If the sets By, ..., Bg, say, in the partition are finite then it is easy to
see that B; is the element with arithmetic progressions of arbitrary
length.

11



12 2. ARITHMETIC PROGRESSIONS

(2) If Z = B;UBy where By = {odd numbers} and By = {even numbers}
then both contain arithmetic progressions of arbitrary length.

(3) If B; = {prime numbers} and By = {non-prime numbers} then Bs
contains arithmetic progressions of arbitrary length. However, it is an
unsolved problem as to whether By contains arithmetic progressions
of arbitrary length.

HisTORICAL NOTE. This result was originally conjectured by Baudet and
proved by Van der Waerden in 1927 [6, 7]. The theorem gained a wider
audience when it was included in Khintchine’s famous book Three pearls in
number theory [4]. The dynamical proof we give is due to Furstenberg and
Weiss [3](from 1978).

2.2 A dynamical proof

The key to proving Van der Waerden’s theorem is the following general-
ization of Birkhoft’s theorem.

THEOREM 2.2. Let Ty,...,Tn : X — X be homeomorphisms of a com-
pact metric space such that T;T; = T;T; for1 <4,5 < N. There erist v € X
and nj — +oc such that d(T,” z,z) — 0 for eachi=1,...,N.

We shall first prove Theorem 2.1 assuming Theorem 2.2 and then return
to the proof of Theorem 2.2.

PROOF OF THEOREM 2.1 (ASSUMING THEOREM 2.2). We want to begin
by associating to the partition Z = B; U...U By a suitable homeomorphism
T:X — X (and then we set T; =T7, j =1,...,N).

Let Q = [],ez11,--- ,k} and then we can associate to the partition Z =
B1U...U By asequence z = (2p)nez € 2 by 2z, =1 if and only if n € B;.

Let o0 : Q@ — € be the shift introduced in Example 3 of section 1.1 (i.e.
(02)n = Tni1, n € Z). Consider the orbit {¢"z : n € Z} and its closure
X = cl(Upezo™z). Finally, we define T; := T® = 0 o...0 0 (T composed
with itself 4 times).

By Theorem 2.2 (with e = 1) we can find z € X and b > 1 with

1
d(Tz, z) < Z,d(Té’:v,a:) <=, d(Thz,x) <

-
-

Since X = cl (Upezo™z) we can choose a € Z such that

1
ey d(Th i, TOTY 2) <

1
d(z,T%z) < Z,d(T{’x,T“T{’z) <7

o |

Thus, for each ¢ = 1,..., N we have that

1 1 1 3
d(TT?z, T%) < d(T*TPx, T)x) + d(TPz, z) + d(z, T%2) < 1 - 1 + 1T
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Since d(z,y) = (%)N(m’y) (where N(z,y) = min{|N| > 0: zy # yn, or
T_N # y_n}) we see that (T°T?z)o = Tpyia = 24 € {1,...,k} for i =
1,...,N. This means that b+ia € B,_, for: =1,..., N, and completes the
proof of Theorem 2.1.

All that remains is to prove Theorem 2.2. This is a fairly detailed proof
and to help clarify matters we shall divide it into sublemmas.

PROOF OF THEOREM 2.2. We shall use a proof by induction.

CAsE N = 1. For N = 1 the multiple Birkhoff recurrence theorem reduces
to the (usual) Birkhoff recurrence theorem (Corollary 1.8.1).

INDUCTIVE STEP. Assume that the result is known for N — 1 commuting
homeomorphisms. We need to show that it holds for N commuting homeo-
morphisms.

SIMPLIFYING FACT. We can assume that X is the smallest closed set
invariant under each of T, ... ,Tx. If this is not the case we can restrict to
such a set (using Zorn’s lemma as in section 1.6).

In order to establish the Birkhoff multiple recurrence theorem for these N
commuting homeomorphisms, the following simple alternative formulation of
this result is useful.

ALTERNATIVE FORMULATION. Let Xy = X x...x X be the N-fold carte-
sian product of X and let Dy = {(z,...,x) € Xn} be the diagonal of the
space. Let S : Xy — Xy be given by S(z1,...,zn) = (T121,--. , TNZN)-
Then the following are equivalent:

(i) the Birkhoff multiple recurrence holds for T7,... ,Tn;

(14)y 32 =1(2,...,2) € Dy such that dx, (S™2,2) = 0 as n; = +00

(where dx (z,w) = sup; ;< d(2i, Ti))-

We can apply the inductive hypothesis to the (N — 1) commuting home-
omorphisms Ty Ty, ..., Tn—1Tx" and using the equivalence of (i), _, and
(#) y_, above we have that for the map R := TyTel x ... % TN_lT];l :
XN—l — XN—l defined by

R (.771, e ,a:N_l) — (TlT];laj'l, . aTN—lTj\_flxN—l)

there exists z = (z,...,2) € Dy—1 C Xn—1 with dx,_,(R™2,2) — 0 as
n; — +oo. In particular, dy,(S™z,z) — 0 as n; — +oo where z =
(2,...,2),2 =(TN"2,...,TN"2) € Dn.

Thus we have proved the following result.
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SUBLEMMA 2.2.1. Ve > 0, 32,2’ € Dy, In > 1 such that dx, (S"z,2') <

Unfortunately, this is not quite in the form of (4¢), we need for the in-
ductive step. (For example, we would like to take z = 2’.) To get a stronger
result, we break the argument up into steps represented by the following
sublemmas.

SUBLEMMA 2.2.2. Ve > 0,Vx € Dy,3y € Dy and In > 1 such that
d(S™y,x) < e.

(This changes one of the quantifiers 3 to V.)
SUBLEMMA 2.2.3. Ve > 0,3z € Dy and n > 1 such that d(S™z,2) < €

(This is almost the Birkhoff multiple recurrence theorem, except that z
might still depend on the choice of € > 0.)

We will now complete the proof of the Birkhoff multiple recurrence the-
orem assuming Sublemma 2.2.3. (We shall then return to the proofs “Sub-
lemma 2.2.1 = Sublemma 2.2.2” and “Sublemma 2.2.2 =— Sublemma
2.2.3” in the next section.)

Consider the function F : Dy — Rt = [0,400) defined by F(z) =
inf,,>1 d(S™z,z). It is easy to see that to complete the proof of Theorem
2.2 we need only show there exists a point x¢g € Dy with F(zp) = 0. To
show this fact, the following properties of F' are needed.

SUBLEMMA 2.2.4.

(i) F : Dy — R* is upper semi-continuous (i.e. Yz € Dy,Ve > 0,35 >
0 such that d(z,y) < = F(y) < F(z)+¢).
(ii) Jzo € Dy such that F : Dy — R is continuous at xg.

PROOF.

(i) This is an easy exercise from the definition of F'.

(ii) For € > 0 we can define A = {x € Dy : Vi > 0, Jy such that d(y,x) <
nand F(y) < F(z) — €} (i.e. 3 points y arbitrarily close to z with F(y) <
F(z) — €). Notice that

(a) A is closed,

(b) Ac has empty interior.

(To see part (b) observe that if int(A.) # @ we could choose a sequence of
pairs z,x1 € int(A.) with F(z1) < F(z) — €, £1,22 € int(A) with F(z3) <
F(x1) — €, etc. Together these inequalities give F(x,) < F(z) —ne < 0 for n
arbitrarily large. But this contradicts F' > 0).

The set of points at which F' is continuous is

(z€Dy: o & Aye> 0} =N, (DN—AL>.
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Since this is a countable intersection of open dense sets, it is still dense
(by Baire’s theorem). Thus there exists at least one point of continuity
for F : Dy — R* (in fact, infinitely many). This completes the proof of
Sublemma 2.2.4.

[ |

Let x¢ be such a point of continuity.

Assume for a contradiction that F(xzp) > 0. We can then choose § > 0
and an open neighbourhood U > z( such that F(z) > § > 0 for z € U.
However, we also know that for the diagonal actions T; : (z1,...,zn) —
(Tixl, “e ,T;JIN)

Dy CUM, (T 0. o TR 'U

(since by the simplifying assumption X is the smallest closed set invariant
under T3, ... ,Tn and so we may apply Lemma 1.9 from Chapter 1).

By (uniform) continuity of the family {77 o...o Ty}, there exists
1 > 0 such that

d(z,y) <n = d(T{" o...0oT™ig, T/ o...0 Ty"'y) <4 (2.1)
(for 1 < j < M). Observe that for y € (Ty" o...oT]T\L,Nj)_lU (j =
1,...,M) we have that F(y) > n. If this were not the case then there
would exist n > 1 with d(y, S™y) < 7, from the definition of F. This then
implies that d(T]" o...0o Ty, T{" o...0 TV S™y) < 6 by (2.1). Choos-
ing z := TV o...0 TNy € U gives F(z) = inf,>1 d(z, S"z) < § which
contradicts our hypothesis.
Finally we see that by (2.1) we have F(y) > n for all y € Dy. However,
this contradicts Sublemma 2.2.3 and we conclude that F'(zy) = 0.

The proof of Theorem 2.3 is finished (given the proofs of Sublemma 2.2.2
and Sublemma 2.2.3).
[ |
2.3. The proofs of Sublemma 2.2.2 and Sublemma 2.2.3
We now supply the missing proofs of Sublemma 2.2.2 and Sublemma, 2.2.3.
PROOF OF SUBLEMMA 2.2.2 (ASSUMING SUBLEMMA 2.2.1). Consider
the N commuting maps T1,Ts,... , Ty : Dy — Dy defined by

T1:T1X...XT1:DN—)DN,
Ty =Ty X ...x Ty : Dy — Dy,

TN:TNXXTNDN—)DN
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We want to apply Lemma 1.9 to these commuting maps with the choice of
open set U = {w € Dy : dpy(z,w) < §}. This allows us to conclude that
there exist n1j,...,nn; (j =1,..., M) such that

Dy = UM, T7™i T~

Thus for any z € Dy we have some 1 < j < M such that

dpy (T™9 ... T™iz ) < (2.2)

N

Next we can use (uniform) continuity of 71 o. ..o T™~i to say that there
exsits § > 0 such that whenever dp, (z,2') < § for 2,2’ € Dy then we have
that

dyy(TM 0. 0Tz T™io. . 0T™Niz) < 2 (2.3)

By Sublemma 2.2.1 32,2’ € Dy and 3In > 1 such that dx, (S"z,2') < 6.
Therefore by inequality (2.3) we have that

dxy (S" (T”lj o... OT”NjZ) ™o, OT”NJ'z') < (2.4)

€
1
Writing y = 7™ ... T™Niz and comparing (2.2), (2.3) and (2.4) gives that

day (S™y,z) < dxy (S"y,T™io .. 0o T™iz) +dy (T™ o...0 T™iz' )

+dxy(T™ 0...0T™iz, T™ o...0T"Ni7)

+dxy (T™io...0T™iz, 1)

<€+€+€_
217"

This completes the proof of Sublemma 2.2.2.
[ |

PROOF OF SUBLEMMA 2.2.3 (ASSUMING SUBLEMMA 2.2.2). Fix 2y € Dy
and let ¢; = 5. By Sublemma 2.2.2 we can choose n; > 1 and z; € Dy with
d(T"lzl, Zo) < €1.

By continuity of 7™ we can find ¢; > €3 > 0 such that d(z,21) < €2
implies that d(T™ z, zp) < €1.

We can now continue inductively (for & > 2):

(a) By Sublemma 2.2 we can choose ny > 1 and 2z € Dy with d(T} 2,
Zk—l) < €g-

(b) By continuity of 7™ we can find € > €11 > 0 such that d(z, zx) <
€x1 implies that d(T™ z, zx_1) < €k.
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This results in sequences

ZO7Z17Z27"'EDN7
ng,N1,N2... € N, such that {
€g > €1 > €2 > ...

d(T"kzk, Zk—l) < e k<1,
d(z, Z,L) < €g41 — d(Tn’“Z, zk—l) < €g.

In particular we get that whenever 7 < ¢ then

d(Tni+ni—1+---+nj+2+”j+1zi’ Zj) < €it1 S (25)

€

5"

By compactness of Dy we can find d(z;, z;) < 5 for some j < i.
By the triangle inequality we have that for N =n; +n;_1 + ...+ nj41

d(TNzZ-, z;) < d(TNzi, zj) +d(z,2;) < e

Thus the choice z = z; completes the proof of Sublemma 2.2.3.

2.4 Comments and references

A treatment of Van der Waerden’s theorem (and many other related ap-
plications of dynamics to number theory) can be found in [1]. The proof
originally appeared in the article [3] and the survey [2]. An account also
appears in [5].

Sublemma 2.2.2 was originally proved by Bowen.

Finally, there is a stronger version of this result due to Szemeredi. In
chapter 16 we shall present Furstenburg’s proof of this using ergodic theory.
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