CHAPTER 15

INVARIANT MEASURES FOR
COMMUTING TRANSFORMATIONS

In this chapter we describe an important conjecture of Furstenberg and
related work of Rudolph.

15.1 Furstenberg’s conjecture and Rudolph’s theorem

Consider the transformations
(i) S:R/Z — R/Z defined by S(x) = 2z (mod 1), and
(ii) T : R/Z — R/Z defined by T(x) = 3z (mod 1).
(For a mnemonic aid: S stands for “second” and T for “third”.) It is easy
to see that these transformations commute, i.e. ST = T'S).

Recall that the S-invariant probability measures form a convex weak-star
compact set Mg (and similarly, the T-invariant probability measures form a
convex weak-star compact set Mr).

We want to describe the probability measures which are both T-invariant
and S-invariant (i.e. the intersection Mg N Mr). We need only consider
the (S, T)-ergodic measures p in Mg N My (i.e. those probability mea-
sures invariant under both S and T for which the only Borel sets B with
T-"S™™B = B VYn,m > 0 have either u(B) = 0 or 1, since these are the
extremal measures in Mg N Mr).

FURSTENBERG’S CONJECTURE. The only (S, T)-ergodic measures are the
Haar-Lebesque measure and measures supported on a finite set.

Notice that the Haar-Lebesgue measure v has entropies log2 and log 3,
respectively, for the transformations S§ and T, and any finitely supported
measure always has zero entropy with respect to either S or T'. The following
partial solution is due to D.J. Rudolph.

THEOREM 15.1 (RuDOLPH). The only (S,T)-ergodic measure j which
has non-zero entropy (w.r.t. either S or T ) is the Haar-Lebesque measure.

15.2 The proof of Rudolph’s theorem

We begin with a few comments.

(1) Haar-Lebesgue measure v on the unit circle is characterized as the
only probability measure invariant under all rotations on the circle.
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154 15. INVARIANT MEASURES FOR COMMUTING TRANSFORMATIONS

Moreover, it is the only measure invariant under all rotations z —
x 4 a(mod 1), where a is any rational number a = .
(2) For n > 1 and f € L?(X, B, ) we can write that

EfT B = Y AW

ot ()

where T'(x) = % (and similarly for S).

(3) We can write (S™)(z) = S'(S" 1z)...S'(x). If we knew that S’
is constant (almost everywhere) then by the martingale theorem we
would have that

n—-+oco

/f(a:—l—a)du: lim E(f(z+a)|S™"B)

= lim [ E(f(z)|S™"B)

n—-+oo

= /f(x)du

and thus we know that v is the Haar-Lebesgue measure.
(4) Since ST =TS we have that

T'(Sz) - §'(z) = (TS) (z) = (ST (z) = S'(Tx) - §'(z).

In particular, we can write i,’,((gg = f,:gg

We begin with the following simple (but fundamental) Sub-lemma.

SUB-LEMMA 15.1.1. S(Tz) = S'(z) for almost all x.

PROOF. We begin by claiming that E(S'|T~1B)(x) = S'(Tx). To see this
we observe that

BT B@= Y W

!
y:Ty=Txzx T (y)

3 igg; (by (4) above)

y:Ty=Tz

, 1
=T | 3 T'(Sy)

y:Ty=Tz

= S (Tx)
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where we have used that there is a bijection between {y : Ty = Tz} and
{w:Tw = T(Sx)} to write that

1 1
2 TS 2 T

y:Ty=Tzx w:Tw=T(Sz)

This proves the claim. To complete the proof of the Sub-lemma we need only
show that E(S'|T~1B)(z) = S'(z). However, since E(.|T~1B)(z) : L?(X, B,
p) — L3(X, B, ) is a positive operator which is a contraction and

1E(S'[T7'B)[l2 = |IS'T]2| = [|5"] 2,

we indeed see that S'T = E(S'|T~1B)(z) = S'(z).
|

If we knew that T was ergodic we could now deduce S’ is constant. Un-
fortunately, we don’t know this and a little more work is required.

DEFINITION. We let A; C B denote the smallest sub-sigma-algebra for

which S’(z) is measurable.

In the course of the proof we shall establish that A; C S™'B (which, by
the definition of A, will imply that S’(z) is constant).

Similarly, we can introduce the sub-sigma-algebras A; C Ay C ... C
A, C ... C B where A, is the smallest sub sigma-algebra for which all of
the functions S’(x), (5?)'(x), ... ,(S™)'(x) are measurable.

SUB-LEMMA 15.1.2. For each n > 1 we have that

(a) S_lAn C An—l—l;
(b) T7A, = A,.

PROOF.

(a) If we write (S™*1) (x) = (S™)'(Sz) - S'(z) then, since by hypothesis
S™ and S’ are A,,-measurable, the right hand side is measurable with
respect to ST1A,,.

(b) Since S'(Tz) = S'(z) we also see that

(8™ (Tx) = §'(Tx) - S'(STx) ...S' (8" 'Tx)
= S'(z)-S8'(Sz)...8" (8" 'x)
= (5") (@)

But the right hand side is A,,-measurable by hypothesis.
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DEFINITION. We write A = V2 ,.4,,. The above lemma guarantees that
T 'A=Aand S7'AC A

We now move on to entropy considerations. Let v = {[0, ], 3, 2], .., [2, 1]}
denote the partition into intervals of length one sixth.

SUB-LEMMA 15.1.3. There exists a sequence s,, — +oo such that the
partitions

Ve g—in — 1 g 1 1 2 6-2°%» —1 1 d
i=0 Y= ’6‘25" 3 6'28",6'23" ey 6 - 25n ) an

o qein o 1 1 2 6-3"—1
=0 Y= 763" ’ 63”763”‘ PRI 6 - 3n )

have the property that every element of either partition is contained in at
most four elements of the other partition.

PRroOOF. For each n > 1 we choose the values s,, > 1 such that 37~ 1 <
2%» < 3™. The lengths of the intervals for each partition are 6_2%" and ﬁ
and thus their ratios are bounded above and below by 3 and %, respectively.

This is enough to complete the proof.
[ |

In what follows we shall make frequent use of the basic identity for entropy:
H(aV p|C) = H(a|CV B) + H(B|C).
Recall that the entropies of the transformations are given by

1 .
MT) = Tim —H(VIZIT ™)

and

.1 i
W) = lim EH(\/Q;(}S 7).

The following sub-lemma shows similar limits involving the sigma-algebra A.

SuB-LEMMA 15.1.4. The following limits exist and are equal to the en-
tropies:
1 .
MT)= lim —H(\V' ST "
(T) = lim —H(ViZoT™*7|A)
and .
h(S)= lim —H(Vir;'S™iy|A).

n—+oo S,
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PROOF. We begin with an argument which is borrowed from the standard
entropy identities. We see that for any n,m > 0 we have that

H(ViEA T y]A)
= H( Vito Ty A) + H(ViZ T T AV (VIS T )
H(ViZ T *y|A) + H(V; "+m T ] A)
H(ViZ Ty A) + H(VIG T ] A)
(where for the last equality we use that 7714 = A). Thus by subadditiv-
ity the limit h(T|A) = lim, 1o 2 H (VI T %y|A) exists. By the basic
equalities for entropy we see that
H(Vizg 'Sy A) = H(ViZ T~ A)
= H ((VizoS™"7) V (ViSg T™) [A) + H (VizoS ™"y (ViZg T ™) V A)
= H((VizoS™ ) Vv (ViZd T™*) [A) = H (ViZg T (VizeS ™) v A)
and so we can identify the limit as

WTA) = lim ~H(VI5 Tyl A)

n—4+oco N

-t (a1 (v (i)

n—4+oo N

= W(T)

since

h(T) = lim 1 (H(VIZZT ™))

n—4+oco n v=

and
H (T~ "D AV (VEZT ™)) < H (T~ Dy]A) = H(y|A) < +oo.

By sublemma 15.1.3 we have that the final expression above is bounded
(independently of n) and thus we have that the following limit exists

1 ,
h(S|A):= lim —H(Virg T 'v|A).
(S]A) = lim —H(Vizo T "v|A)
Moreover, this argument gives that h(T'|A) = 10g2 h(S|.A).
Observe that if we replace A by the trivial sigma-algebra then the same
argument gives that h(T) = 2&21(S). Comparing these identities we see

log 2
that h(S) = h(S|A).

We now apply Sub-lemma 15.1.4 to show that A C V52,8 %y, which is
essentially the end of the proof.
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SUB-LEMMA 15.1.5. H(A| V2, S71B) = 0.

PrROOF. By the basic equality for entropy we have that

H(A| V2 S7') = H(y VA V2, ST8) — H(v| V2, STy v A)
= H(y|VZ, S718) — H(y| V2, ™'y V A) (15.1)
= h(S) —H(¥|ViZ, 577V A)

(where we have used that H(yV A| V2, S7¢8) = H(y| v, S7B) = h(S)).
We next observe that

H(V?:_ols_i'ﬂfl)

=H(y|ViZ! STV A) + H(VIL S| A)

< H(y| VI STy Vv A) + H(VIZS Sy A)

SH@W| VIS STy VA) + H| V22 STV A) + ...+ H(v|A)

(This argument is a modification of the standard entropy proof that h(S) =
H(y|Vv$, S7%y).) Thus from the definition of h(S|.A) we have that

h(S|A) := lim lH(\/?;OlS_iﬂA)

n—+oo N
_ : 1 n—1 g—1i : 1 n—1qg—1
= nkffoo ﬁH(’ﬂ Vicy STty v A) + ngrfoo EH(Vi=1 S7'v|A)

= H(y| V{2, 57').
(15.2)
Comparing (15.1) and (15.2) we see that

0 < H(y| V2, ™) < MT) — h(T|A) = 0.

To finish off the proof of Theorem 15.1 we need only recall that H(A| V2,
S~ty) = 0 implies that A C V52,8 %y.

Repeating the argument with S replaced by S* for k = 1,2,... we see
that A C NS>, S™™B. In particular, this shows that (S™)’(y) is constant for
y € {w|S"z = S™w} (almost everywhere).

We observe that since h(S) > 0 (equivalently A(T") > 0), there must be a
set of positive measure on which S has two pre-images (otherwise S would
be invertible almost everywhere and then have entropy zero). Moreover we
claim that the set with two S pre-images is invariant under S and 7. By
ergodicity of (S,T) we see that almost all points have two pre-images.

This suffices to apply the argument in comment (3).
|
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15.3 Comments and references

The original proof of Rudolph had a symbolic formulation [2]. The proof
we give here is a version due to Parry [1].
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