CHAPTER 14

THE VARIATIONAL PRINCIPLE

We introduced in chapter 3 the topological entropy h(T) of a continuous
map T : X — X of a compact metric space X and in chapter 8 the entropy
h,(T) of a T-invariant probability measure p. In this chapter we show that
these two notions are closely related.

14.1 The variational principle for entropy
The main result of this chapter is the following.
THEOREM 14.1 (VARIATIONAL PRINCIPLE). Let T : X — X be a contin-

uous map on a compact metric space.

(1) For any T-invariant probability measure p we have that h,(T) <
h(T).
(2) W(T) =sup{h,(T): p is a T-invariant probability measure}.

14.2 The proof of the variational principle

The proof we give is due to Misiurewicz [1]. Recall that the topological
entropy of a cover U is H(U) = log N(U) and the entropy of a partition «
with respect to p is Hy (o) = =3 4, #(A) log u(A).

PROOF OF (1). Fix a finite Borel measurable partition o = {4y, ..., Ax}
for X. Given € > 0, say, we want to “improve” this partition by choosing a
family of closed sets Aq,..., Ag such that

(1) Az CAZ', 1=1,... ,]{,‘, and
(2) p(A; — A;) <,
and then defining a new partition & = {Al, e ,flk,V}, where V = X —

(ulefli).

We can consider an open cover for X defined by
U= {Aluv,... ,AkuV}

If we compare the open covers \/iz_olT_iZ/{ and the partitions \/?Z_OIT_ié then
we see that

N (ViRT6) < 2N (VI T U, n>1 (14.)
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148 14. THE VARIATIONAL PRINCIPLE

(where we recall that N (V! /T~if) is the number of elements in a mini-
mal subcover for Vf_OIT_iZ/{ and N (V72 T%@) is the number of non-trivial
elements in VI T~4).

SUB-LEMMA 14.1.1. H,(VIT~a&) <log N (Vi T—i4).

PROOF. Assume that VI~ T ‘@& = {C,...,Cn}; then we can write
H,(ViZy T~16) = = 3207, p(Ci) log u(Cr).
|
We can use Sub-lemma 14.7 to bound
H,(VIZ/T™"&)
<log N (\/?z_olT_i&)
<nlog2+log N (VI T~U) (by (14.1)).
Recalling that
WT) > WTU) = T H(VET 1)

and )
hu(Tyo) = lim —H, (Vi T a)

n—+oo N

we see that h,(T,&) < log2+ h(T). Moreover, by Corollary 8.6.1 we have

that A A A
|hu(T, &) — hy (T, )| < Hy(a|@) + Hy (&)

_ o u(CnC)
= ZZ C’ﬂClg( 2©) )

Cea Cea

— Z Z CﬂC’ ) log (u(C(g)C)) <1,

Cea CEOz

say, providing € was sufficiently small.
Since o was arbitrary, we see that

hy(T) = sup{h, (T, @) : « is a finite partition} < A(T) +log2 + 1.

Finally, we can apply the argument to iterates T% (k > 1) to see that
h,(T*) < h(T*)+log2+1. By Corollary 3.8.1 we know that h(T*) = kh(T).
The following gives the analogous result for measure theoretic entropy.

SUB-LEMMA 14.1.2 (ABRAMOV’S THEOREM). For k > 1, h,(T*) =
khy(T).

PROOF. Given any partition o we observe that

hy (TF VEST™a) = lim lHH (Vi Tk (V;’;&T‘ja))

n—+oco N

.k yN-1
= 1 —H, T 'a) = T,
N-»foo (Vico' T™"0) = khu (T ).
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Given € > 0 we can choose a with h(T,a) > h,(T) — € so that we have

hu(T*) > by, (TF,VE T )
> khy, (T, @) > khy(T) — ke.
Since € > 0 is arbitrary we see that h,(T*) > kh,(T).
To get the reverse inequality, notice that hy, (T*,a) < h, (T*, vEZ/T~a),

using Lemma 8.6. Given € > 0 we can choose o with h, (T, ) > h,(T*) — €

and then .
khy(T) > kb, (T, @) = hy, (TF, Vi 1T )

> hy, (T*, @) > h,(TF) — e
Since € > 0 is arbitrary we see that h,(T*) < kh,(T).

|
We can now complete the proof of (1) since
— oy w(TF)
h” (T) B kzkr—}{loo k
4§ log2 + 1
< tim MID Loy, le2+1 g
k=400 k k—+oo kK

|

PROOF OF (2). It suffices to show that given 6 > 0 there exists a T-
invariant probability measure p with h,(T) > h(T') — 6. We want to choose
¢ > 0 sufficiently small that lim,_, ;o = log(s(n,€)) > h(T) — 6, where s(n, €)
is the maximal cardinality of an (n,¢)-separating set. We can find a sub-
sequence n; — +oo such that n% log(s(n;,€)) = h(T). Let S,, be such an
(n;, €)-separated set.

For each n; we can define a (possibly non-invariant) probability measure

Up, = 1 Z O-

s(ng, €) o
2

In order to arrive at a T-invariant probability measure we can consider an
accumulation point u (in the weak-star topology) of the measures

By replacing {n;} by a sub-sequence, if necessary, we can assume that p,, —
L.

Let want to consider a finite partition o = {Ay,..., Ag} such that

(1) diam(4;) <e, i=1,...,k; and

(2) p(04;)=0,fori=1,...,k.
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Since Sy, is an (n;,€)-separated set we know that each set C € a(™) :=
Vv -lT=iq contains at most one point z = z¢ € Sy,,. Thus of the sets in

j=0
Sp, there are s(n;,€) sets with v,,-measure o ! ) and the remainder have

n;,€e
Vp,-measure zero. In particular, we see that

log(s(ni,€)) = — Z Un, (C)logvy, (C). (14.2)
Cealmi)

In order to take limits in a sensible way we fix first 1 < N < n; and then
0<j5<N-—1. We can write

™) = Vi T e = (Vl=j (moa )T~ (Vf\i_olT_iO‘)> V (VierT o)
0<I<n;—N

where E = {0,1,...,j—1}U{M;, M;+1,... ,n;— 1}, with M; = N [2=1],
has cardinality at most 2N.

SUB-LEMMA 14.1.3. Given measurable partitions 3 and v we have that

H”ni (BVy) < Huni (B) + Huni (7)

PrROOF. For invariant measures, this would be an immediate consequence
of Lemma 8.4 (and Corollary 8.4.1). However, although in chapter 8 we
assumed that the ambient measures were invariant, this property was not

used at this stage and the result remains true without it.
[ |

In particular, we have that

= Y ml(@)log,(0)

Cea(ni)

< Y [+ T w@bemo
l=j (mod N) ceT-1alN)
0<I<N—n;

(14.3)
+ Z - Z Un,; (C) 10g Vn; (C)
1€E CeT—ial)
M.
<Y = 3 @), (D) log(T™N )"0, (D))
r=0 Dea(N)
+ 2N logk

<
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(where for I = 7N + j there is a natural correspondence between D € a(N)
and C € T™'a™) with (T*)*v,, (D) := v,,(T7'D) = v,,(C) and C = T'D).
Summing the inequalities (14.3) over j =0,..., N — 1 we have by (14.2)

N log(s(ni,¢€))

S - S @0 os@ ) | + o8 0gr MY
1=0 Dea®)

SUB-LEMMA 14.1.4. Let o be a measurable partition and let v1 and v
be (not necessarily invariant) probabilty measures; then given 0 < a < 1 we
have that

> lavs + (1 = a)va](A)loglar + (1 — a)ra](A)
A€a

<a (Z v1(4) 103”1(/‘0) +(1-a) (Z v2(A) log V2(A)) :

A€a A€Exa

Proor. This follows immediately since ¢ — tlogt is convex.
Dividing (14.4) by n; N we get that

1 log(s(n;,¢€))

ng
n;—1
L 1 N e 2N log k
<= =% 2 @) (O)og((T7) v, (C) | + ==
n; i
r=0 Dea(N)
1 2N logk
< N Z pin; (C) log pn, (C) + T

where we have used Sub-lemma 14.1.4 repeatedly for the last line.
Since we have assumed u(0A4;) = 0, letting n; — +oo (with N fixed) we
have that
o Z ll’nz(C) 1Og Hn; (C) - HH(O‘(N))'
CealM)

This means that

h(T) -6 < lim S log(s(n;,€))

n;—>+00 N,

1 2N?logk
< (N) i = R
- NHM(OZ ) + nzl—l>r-rl-100 n;

1
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Letting N — 400 we have that

. 1
WT)—d < lim <H, (™) = hy(@) < h(T).

Since 0 > 0 is arbitrary this completes the proof.

14.3 Comments and reference

The proof we give is due to Misiurewicz [1]. Theorem 14.1 (1) was origi-
nally due to Goodman. Theorem 14.1 (2) was subsequently proved by Wal-
ters.
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