CHAPTER 12

STATISTICAL PROPERTIES IN ERGODIC THEORY

12.1 Exact endomorphisms

DEFINITION. We call a measure preserving transformation 7' : X — X on
a probability space (X, B, i) an ezact endomorphism if N\S_, T~ "B = {X,0}
up to a set of zero measure (i.e. if B € T~" B, for every n > 0, then y(B) =0
or u(B) =1).

ProprosiTIiON 12.1. T : X — X is exact if for any positive measure set
A withT"A € B(n > 0), u(T™(A)) - 1 as n — +o0.

It is easy to see that this sufficient condition for exactness is also necessary
[2] (although we will not need this here).

ProOF. First we remark that T is exact if every measurable set A sat-
isfying for arbitrary n the relationship A = T~"(T™A) is of either measure
zero or measure 1. For such a set A, it is clear that u(A) =1 if u(A) > 0, as
p(T™A) = p(A) and so limy, o0 u(T™A) = u(A) =1 if u(A) > 0.

[ |

PROPOSITION 12.2. If T is exact then it is strong-mixing.

PROOF. Consider the sub-sigma-algebras B D T7!B > T72B D> ... D
{X,0}. We can associate the mnested subspaces L?(B) > L2*(T~1B)
D L*(T72B) D ... D C and for each n # 0 we can choose an orthonormal ba-

o0

sis {k;oT™ Y for L2(T—"B)o L*(T~("+tVB). Tt follows that {k; o T™ zionzo
is an orthonormal basis for L2(X, B, p). Two functions f,g € L*(X, B, u)SR
can be written in the form

{ f=30r0Xianikio T" + ([ fdp),
9= 002 i bniki o T" + ([ gdp),

where ay, ;, b, ; € R. In particular,

/fOTNng:iZan,ibn—}—N,i‘i‘/fdl///gdll’_)/fd/.b/gdu

n=0 =<

as N — o0, i.e. T is strong-mixing.
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126 12. STATISTICAL PROPERTIES IN ERGODIC THEORY

EXAMPLE 1 (ONE-SIDED APERIODIC MARKOV SHIFTS). We can modify
the definition of the Markov shift and define

Xi=fee [[{0....k=1}: Alwn,@nin) = Lin € 27}
neNt

and 0 : X1 — X1 by (0x), = zp41. For the stochastic matrix P (with
entries P(i,7) = 0 iff A(i,j) = 0) letting p be its left eigenvector we define
the measure on a cylinder

[0, sii—1)={z € X} :z;=14;,0<j<1-1},

M[’io, e ,il_l] = p(lo)P(’LO, 21) .. .P(’il_z, /’:l—l)-

Let A be aperiodic. Then the argument for the (two sided) Markov shift still
applies and we see that T is strong-mixing; moreover, Ve > 0,V cylinders C,
AN > 0 such that Vn > N and any cylinder D we have |u(C NT~"D) —
p(C)u(D)| < ep(C)u(D). By approximating an arbitrary set B € B by a
cylinder D we see that the same result holds on replacing D by B.

Assume that E € N9 T~ "B and write £ = T~ "FE,. For any cylinder C
we see from the above observations that

wCNE)=pCNT"Ey) 2 (1 —e)u(En)u(C) = (1 - e)u(E)u(C);

since € > 0 is arbitrary we see that u(C N E) > u(E)u(C) for all cylinders
C. By approximation by disjoint unions of cylinders we can replace this
by u(BNE) > pu(E)u(B), VB € B. If we take B = X — E we see that
p(E)u(X — E) = 0. This completes the proof that T is exact.

12.2 Statistical properties of piecewise expanding Markov maps

Consider a piecewise expanding C? surjective Markov map T : I — I for
which there exists 8 > 1 with inf,c7 |T'(x)| > 5. We can define an operator
L:LYI)— L'(I) as follows.

DEFINITION. Given f € L(I) we define the Perron-Frobenius operator
by

() -
Li@)= Y 52 <=Zf(¢ix)\¢£(w)\><m(x)>

!
per—1g 1T (@)l

(where 1; denotes the inverse of T'|I;).
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LEMMA 12.3. For any f € LY(I) satisfying (Lf)(x) = f(x) the measure
i defined by f = dw 1s T-invariant.

Proor. This follows from the change of variables formula since we have
_ k
IA) = fT—lA f(z)dz = Zi:l fTI,nA [P ()] fovpi(x)dr = fA Lf(z)dr =

p(A).
|

We have the following result.

PROPOSITION 12.4 (SMOOTH INVARIANT MEASURES FOR PIECEWISE EX-
PANDING MARKOV MAPS). There ezists an invariant probability measure p
which is absolutely continuous with respect to the ( normalized ) Haar—Lebesgue
measure A (i.e. there exists f € L'(I) such that u(B) = [, f( x) for
every Borel set B € B).

Proor. By Lemma 12.3, to construct p it suffices to find such a function
f satisfying Lf = f. We first choose a point z € I and for any n > 1 we
look at the families 77"z of all n-iterate pre-images of z.

It is easy to see from the chain rule that

n B £"—11(y)_ 1
@)= D TEgl = 2 )

yeT 1z yeT—"g

We denote the inverse of T™| N} 0 T~ I, by ¥i,. i, Let V be the
partition generated by {T'(I;) : 1 g i § k}. Then for z,2’ € V € V we can
compare

' 1 1
L7 (z) — L™1(z')]| = | Z )]~ Z W|

yeT—'n:K y’ET_nﬂC’

= > W, @] =¥, @) xTor, s, (@)

21 yeee 9ln

where I, ., = M;Z oT79I;,,,. Observe that
].Og | 'Ll 'Ln :L‘I Zl ¢ZJ+1 i 'ILJ) ‘
7/1 i (.17 j=1 '@bl (¢Zj+1...7,n$)

' (ij.in’)
— 1 g
Z og\ % T )I
SZlog <1+D|3,CB;_:§|)

i=1
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where D bounds % on I. Then we have a constant C > 1 such that

SUPgeTI;, |¢’£1zn (2)]

infzerr,, (¥, i, @]

<C, VYii,...,in,n>0.

The property allows us to find a constant K < +oco such that

S W @)X, () < K, Vo

We conclude that there exists D’ > 0 such that [£"1(x) — L"1(2)| <
K (o —9l:25)

(where none of the bounds on the right hand side depends on n). We
conclude that Vn > 1

(1) the functions £"1 are bounded in the supremum norm,
(2) the functions £"1 are an equicontinuous family.

We construct a new family of averages

n—1
1
Fo(w) =~ Y LF(z), n>0.
k=0

We again see that

(1) the functions F,, are bounded in the supremum norm,
(2) the functions F,, are an equicontinuous family.

By the Ascoli theorem, there must be a limit point F,,, — f (> 0) in the
continuous functions on each component of [0,1] — {zo,...,2x} and since
J £"1dz =1 we have [ fd\ =lim,_,o [ F,, d)\ = 1. Moreover, we see that

ny,—1 k
LF (@)= Y o, (y) _ ™ niz L*1(y)

/ /
e ) T e ny & T
ne,—1
1 '« LF1(y)
=—> D i
1 n,—1
=— > LK)
Ny
k=0
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completing the proof.
[ |

DErFINITION. We say that T is aperiodic if there exists a positive number
m such that A(T~™1; N 1;) >0, Vi,j > 0.

THEOREM 12.5. The absolutely continuous invariant measure p in Propo-
sitton 12.4 is exact if T : I — I is aperiodic.

PROOF. By Proposition 12.1 it suffices to show that for any set A €
B with u(A) > 0 and for which T"A € B for all n > 0 we have that
limy, oo p(T™A) = 1.

Giveni = (i1,... ,in) we write I; = Nf_, T/ ifint (N7, 777111 ) #
(). As T is piecewise invertible on each atom I;, we know that T"| I isa C1-
diffeomorphism. For all I; and for all n > 0 we write (T"|7,)~" = t;. Let
z,y € T"1; (=T1I;,); then it follows from the mean value theorem that

[¥s(2) — i(y)| = [¥i(0)]|z — ]

for some 6 € I;. From the above equality and the condition (i) in page 39,
the diameter diam (I;) of I; decays exponentially fast (i.e., diam(1;) < ﬂin)
This implies that the partition Z = {I;} is a “ generating partition”. In
particular, for any ¢ > 0 we can choose a finite disjoint set of cylinders
{Z; : j = (41,.--,J1)}, with p ((UjIj) AA) < €. The following estimates
will be useful in the rest of the proof.

(a) Given d > 0 there exists at least one cylinder I; (where j = (j1...Ji1),
say) for which

MANT) > (1-6) A(I))- (12.1)

Assume for a contradiction that this is not the case, then for all cylin-
ders I; we would have A(AN1;) < (1 —6)A(L;). We can extend this
inequality to disjoint unions of cylinders, and then by approximation
to arbitrary sets B € B to get u(ANB) < (1 —6)u(B). However, if
we take B = A, then we get p(A) < (1 —0)u(A), which contradicts
w(A) > 0.

(b) We observe that there is a constant C > 1 such that for any cylinder
I;

! ()]
- <C. 12.2
saetnr, [ (9)] = (12:2)

(This is usually referred to as Renyi’s condition.)
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From the change of variables formula we see that

AT < [ (T @)
g(%yaﬂnm)MQnA%

e (;g; (T (y )\) A(I;NA%)  (using (12.2))

fI N (z)|d\(x)
/AR
< CSMNT'T) (using (12.1)).

N A°)

If T* (;) = I, then we could proceed directly to the end of the proof. How-
ever, since this need not be the case, we require the following sublemma.

SUBLEMMA 12.5.1. There exist S > 0 and a subset I' of T* (I;) which is a
finite disjoint union of elements of V;S:OlT_i{h ... It} and satidfies T (I') =
1.

Proor. Let {Uy,...,Un} = {TI,... T}, where N < k, denote the
collection of images under T' of the original intervals. The aperiodicity as-

sumption implies that for each 1 < j < N there exists 0 < s; < +oc
such that each U;, ¢ = 1,..., N, contains a cylinder I,(,’L’ﬂ)m,msj satisfying
T%i I,Sif)m = U;. In particular, we see that T°:U; D TS'I,%’B;) e, = U;.
Let, Tl(I) U;. Setting S = H iy sj and I' = U 8D m,, allows us

to have that I’ C T'(I;) and T5T' Ul U; = X.
- [ |

We need only modify the previous argument to write
MT3(I' N (TP A)°)) < D6

for some uniform constant D > 0. Since A(T°(I' N (T'A)¢)) > 1= XN(T°(I' N
T'A)), we see that

MT'5A) > NT5(I'nT'A)) > 1 — D6,
Since p is absolutely continuous with respect to A we conclude that pu(7T™A) —

1 as n — +o0.
|
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COROLLARY 12.5.1. If T : I — I is aperiodic, then it is strong-mizing
with respect to any absolutely continuous invariant measure. In particular,
there exists a unique absolutely continuous invariant probability measure.

Proor. By Proposition 12.1 the exact measure p is also strong mixing.
By Proposition 11.2 it is also ergodic, and since no two distinct ergodic mea-
sures can be equivalent to Lebesgue measure (and thus each other) uniqueness
follows.

PROPOSITION 12.6. p s equivalent to A.

Proor. First we show the following fact:
Ve > 0,3N(e) > 0 such that for each z € I, T"Vz is e-dense in I. (12.3)

As we have already observed in Theorem 12.5, for VI;, _ there exist a set of
cylinders {L(f;)l___msi :i=1,...N} and S > 0 satisfying TS(Ui]\LIIT(ri)l...msi) =
I.Let x € I, . p,. Then Ji s.t. my...mg hy ...~ is an admissible sequence
and 80 Y, m,, () € Iy ..m,, C T'I;, .. j,- Hence we have that T—(+3i+t) N
I .. j, # 0. Here we take t = S — s;. Let [ = l(€) be a positive integer such
that supr, diamlj, . j < €. Then, each I; . ; contains at least a point
belonging to T~(+%)z. Choosing N (¢) = I(€) — S, we have the fact (12.3).
It remains to show that f is bounded away from zero. Assume for a contra-
diction that f(z) = 0. Thensince foralln > 1, L™ f(z) = >, cp-n, % =
0, we see that f(y) = 0 whenever T"y = z. By the property (12.3) the set of
such points is dense. The continuity of f implies that f is identically zero,
contradicting [ fdX = 1.
[ |

PROPOSITION 12.7. For irreducible piecewise expanding Markov maps T :
I — I the following condition is equivalent to strong mixing:

AoT™™(A) = u(A), asn — +o0o (VA € B),
where \ is Lebesgue measure.
Proor. It is enough to observe that

AT A) = / xr-na(@)dA(z) = / xa(T"2) f(2) dp(z)

- / xa(@)d(u(@)) - / dA(z)) = u(A).
[ |

REMARK. Under the generating condition we can extend these results to
multi-dimensional piecewise expanding Markov maps with countable infinite
partitions.
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Since the invariant density f is strictly positive, we can make the following
definition.

DEFINITION. We define an operator £ : L' (I) — L*(I) by £(h) = %,C(fh)
where h € L'(X).

PROPOSITION 12.8. L*(u) = p, i.e. the dual operator L* acting on mea-
sures (defined by (L*p)(A) = [ Lxadp) fizes p.
PrOOF. It is an immediate consequence of Sublemma 14.2.3 and the def-
inition.
[ |

THEOREM 12.9 (CONVERGENCE TO INVARIANT DENSITY). L™(h) —
f ([ hdX) uniformly for h € CO(I).

PROOF. Define g = % From Renyi’s condition we have that
there exists a uniform constant D > 1 such that Vz,z’ € Uy

n—1 ;

TZ
D(z,z') = sup sup 7||9(Ti y,)|
n2lyeT "zy' €T~ "z’ ;4 9(T*y")]

is bounded above by D and furthermore
D(z,z') = 1 as |z —2'| = 0.

An easy calculation shows that {£"h : n > 0} is equicontinuous on each
component of I — 9V for Vh € Cy(I — dV). It follows from the definition of
L™ that ||£™h|| is bounded by ||h||os and so the closure of {£™h : n > 0}
in C(I —0V) is compact. Hence there are a subsequence {n;} — oc (i — 00)
and h* € C°(I — V) such that £ h — h* uniformly.

We can now show that any limit point of the sequence is a constant which,
in particular, shows that the limit exists. Notice that minge;(£¥h*(z)) =
mingez(h*(z)) for all k£ > 0. For any k > 0 choose z € I such that £¥h*(z) =
minger h*(z). Then for all y € T~z we have that h*(y) = minges h*(z). In
fact,

Lt (2)= ) (9(w)---g(T*'y)) A’ (y) > minh* ()
Tky=2
with equality if and only if A*(y) = minges h*(x), Yy € T~ "z. By (12.3)
we see that the set of y such that 3k > 1 with 7%y = z is dense. Thus h*
is a constant function with value mingec; h*(x) on a dense set, and thus by
piecewise continuity is constant almost everywhere.

Moreover, this constant takes the value limy, oo [ £%hdp = [ hdp. Re-
placing h by % for h € C°(I) and appealing to the definition of £ we get
that

ey == 1Ly ([5san) =5 [nar)
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uniformly as n — +oo0.

12.3 Rohlin’s entropy formula

In this section we want to give a formula for the entropy of an irreducible
Markov piecewise expanding interval map 7' : I — I with respect to the
unique absolutely continuous probability measure .

THEOREM 12.10 (ROHLIN ENTROPY FORMULA).
hu(T) = [ log IT'(T'0) du).

PROOF. The proof follows immediately from the string of statements (i)-
(iv) below.
(i) By the chain rule we can write log|(TN) (z)| = Zi]i_ol log |T'(Tz)|
for each z € I, N > 1. Since the measure p is ergodic (even exact)
we can apply the Birkhoff ergodic theorem to deduce that

1

- 1og (TVY ()] / log |T" () |du(x) as N — +o0.

(ii) Let z € I, ... iy = ﬂfrle_(j_l)Iij; then using Renyi’s condition we
can estimate

1

)\(I“ZN) - /TNIil...iN |(TN)I(¢'L1ZNZ)|dA(Z)
] 1
<c (meﬁfl__f_m) m) A(TI;,)

< (e

and

1 1

1 1

Thus we see that for any x € T

1 1
— lim —1 I, . )= lim —log|(TN)
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(where z € I;, ;. )-
(iii) Since the density f of the invariant measure is bounded from below
and away from infinity, we see that

1 1
- hm Nlog)‘(IhZN):_ hIIl —log,u(I“ZN)

N—+00 No+4oo N

(iv) Finally, we claim that

. 1
— NE)I_EOO N 10g /‘I’(I'i1~~~iN) = h’ﬂ(T)

This is an application of the Shannon-McMillan-Brieman theorem to
interval maps, whose proof we present in the next section.

[ |
12.4 The Shannon-McMillan-Brieman theorem

We now give an application of entropy to describe the asymptotic size of
elements in partitions.

Let @ = {A1, Ag,...} be a measurable partition of the space (X, B), i.e.
X =Ur A, and A;NA; =0 for i # j (up to a set of zero u-measure).

For each n > 1 we consider the new partition a,, = \/?:_OIT_ia. For almost
all z € X we can choose a unique element A, (x) € a,, with z € A, (z).

THEOREM 12.11 (SHANNON-MCMILLAN-BREIMAN THEOREM). Let T :
X — X be a measure preserving transformation of a probability space (X, B,
w). Let a be a partition. For almost all x € X we have that

8D gy fi7)

as n — +o0o, where f(z) = I(a| VoL, T ") (z) and T is the sigma-algebra

generated by the T-invariant sets T"'B = B.

COROLLARY 12.11.1. If T is ergodic then for almost all x € X

logp(An(@)) h

T,a) as n — +o0.
n

If a is a generating partition then

_log i (An(2))

— h,(T) as n — +o0.
n
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PROOF. Assuming the theorem, the ergodicity of the measure and the
T-invariance of the limit imply that it is a constant. Integrating therefore
gives that the limit is

/ B(f|T)du = / fdp = H(a| V&, T~"a) = h(T, a).

PROOF OF THEOREM 12.11. We first observe that

I(ViZy T™"a)(z) = —log p (An(2))
Using the basic identities for the information function we see that
(Vi T ')
=I(a| VIS T7) + I(VIS T a)
=I(a| VI T7%) + I(a| VIZ2 T'a)T
+ .o+ 1T )T 2 +I(a)T" L

(12.4)

We see from (12.4) that (almost everywhere)

lim sup — |I( VI T ) — E(f|T)|

n—r—+00
< limsu e lr— o) T
imsup (VS T~0) = 3 7 (12.5)

n—1

+hmsup\l ZfTi — E(f|7)]

n—-+o00 i—0

(using the triangle inequality). By the Birkhoff ergodic theorem (Theorem
10.6) we know that

lim —| Zsz E(f|7)| =

n—+oo N

(almost everywhere) and thus the second term on the right hand side of
(12.5) vanishes.
We can next write from (12.5) that

]' n i (2
—(vViz LT Tig) — ZfT

n—1
1 ) . .
<= E (o] V32 A ]a)T’—I(a|VJ‘?°;1T_7a)T’|
n
i=0
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(using also the definition of f). For N > 1 we define

Fy(z) := up (| ViZi T a)(z) = I(a] V2, T a)(z)|

and then upon fixing N > 1 we see that

1 n—1
SV T ) = ) ST
=0

(12.6)

< (FNT" + FNT"_1 + ...+ FNT”_N>
o n

. (25251 o] Visi T )T — 1] Vi, T—ja)m)
n

We can bound the second term on the right hand side of (12.6) by

N-1
> (o VI T )T — I(af V2, T a) T
1=0

1
n

N ' )
< — I(a| V§2, T o) + I(a| VE_, T
< 3 (s (el viz, 70 + o] viy 7))

which tends to 0 (almost everywhere) as n — +o0.
We now turn to the first term on the right hand side of (12.6). We observe
that by the Birkhoff ergodic theorem

lim sup

n—-+oco

(FNTn +FNT"_1 + ... +FNTn_N
n

) = E(Fn|T).

Notice that Fy > Fny1 and so
E(FN|T) > E(FN+1]Z) > 0

(since E(.|Z) is a positive operator). Since E(Fn|Z) — 0 (and is dominated
by an integrable function) then

lim [ E(Fy|T)dp= lim [ Fydu=0.

N—+o00 N—+o00

This completes the proof.
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12.5 Comments and references

A good reference for more information on exactness is Rohlin’s original
paper [2].

Without the Markov assumption (but still assuming the uniform expansion
property) the existence of an absolutely continuous invariant measure follows
from the work of Lasota and Yorke [1].

There is an alternative proof of the Shannon-McMillan-Brieman theorem
given in [3, 5.2]
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