CHAPTER 13

FIXED POINTS FOR
HOMEOMORPHISMS OF THE ANNULUS

13.1 Fixed points for the annulus

Let A =R/Z x [0,1] be a closed annulus. Assume that T: A — A is a
homeomorphism that preserves the two boundary circles (i.e. T(R/Zx{0}) =
R/Z x {0} and T(R/Z x {1}) = R/Z x {1}).

DEeFINITION. We say that T : A — A is area preserving if the Haar-

Lebesgue measure A is T-invariant.

REMARK. Wesay that T : A — Ais conservative if there are no wandering
sets of positive measure. This condition will suffice for most of the results of
this section.

ExAMPLE. For any pair of values 0 < «, 8 < 1 consider the map 7' : A —
A given by T'(z,y) = (z+ay+B(1—y),y). To see that this is area preserving
we can write this affine transformation as T'(z,y) = (3,0) + B(z,y) where

B = ((1) aI'B ) Since det(B) = 1 we see that T is area preserving.

DEFINITION. An e-chain (for T : A — A) from (z,y) to (w,z) is a se-
quence of points

(may) = (5'30,3/0), (xl?yl)a e ’(mnayn) = (’UJ, Z) €A
such that

d(T (24, yi), (Tit1,Yig1)) <€ fori1=0,...,n—1.

We can use the same notation for e-chains for the lift 7' : R x [0,1] —
R x [0, 1].
These are finite versions of the pseudo-orbits introduced in chapter 5.

LEMMA 13.1. If (z,y) = (z0,%0), (Z1,Y1)s-- - s (Tn,yn) = (w, 2) is an e-
chain from (z,y) to (w,z) and (w,z) = (wo,20), (W1,21),-- 5 (Wny2n) =
(u,v) is an e-chain from (w, z) to (u,v) then defining (Tnii, Ynvi) = (Wy, 2;)
for 0 < i < m makes (20,0);- - 5 (Tns Yn)s (Tnt1,Ynt1)s - -+ 5 (Trtms Yntm)

an e-chain from (x,y) to (u,v).
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140 13. FIXED POINTS FOR HOMEOMORPHISMS OF THE ANNULUS

PROOF. This is immediate from the definitions.
[ |

DEFINITION. We say that a point (z,y) is chain recurrent if for each € > 0
we can find an e-pseudo-orbit from (z,y) to itself.

We say that T : A — A is chain recurrent if for every (z,y), (w,z) € A
and every € > 0 we can find a finite e-pseudo-orbit from (z,y) to (w, z).

LEMMA 13.2. Let T : A — A be an area preserving homeomorphism; then

(i) every point (z,y) € A is chain recurrent,
(ii) T : A — A is chain recurrent.

ProOOF. (i) Fix € > 0 and then by (uniform) continuity we can choose
5 > 6 > 0 such that whenever |(z,y)—(u,v)| < é then |T'(z,y)—T (u,v)| < §.
Let us choose a finite cover of J-balls

AC Uij\;lB((zi,wi),d) where (z1,w1),..., (2N, wnN) € A.

Since T is area preserving we have for each 2 = 1,..., N that we can choose
n; such that T~ B ((z;, w;),0) N B ((z;,w;)d) # 0. If we choose (u;,v;) in
this intersection then

( (3707?/0) = (’U,i,’Ui),

(xla yl) = T(uu U’i)7

3 (l’j,yj) = Tj(uiavi)v

(mni_l’ yni_l) = T(ni_l)(uia Ui)a

\ (xmv ynz) = (uia vi)

gives an §-chain from (z;, w;) to itself since we observe that
(a) [T((z0,y0)) — T(zi; wi)| < 5 (since [(zo,y0) — (2i, wi)| = |(wi, vi) -
(zi,wq)| <6), .
(b) T(zj,y;) =T (T (us,vj)) =TI (uj,v;) for j =1,... ,n; — 2; and
(C) T(ajni—h y’ni—l) =Tm (uj7 Uj) € B((ziaw’i)a 6) - B((Z’i7 wi)7 %))
For any (z,w) € A we can choose some (z;,w;) (1 = 1,...,N) which is
d-close to (z,w) (i-e. |(2,w;) — (z,w)| < §). We then see that the above
s-chain from (z;,w;) to itself also serves as an e-chain from (z,w) to itself
on replacing both (zg,yo) and (2,,, yn,) by (z,w). To see this observe that:
(d) [T(z,w) = (21, 91)| < [T(2,w)) = T (2i, wi) | + [T (zi, wi) = T(z1,91)| <
S+ 5 = € (since [(z,w;) — (z,w)| < ¢ implies that |T(z;,w;) —
T(z,w)| < 3),
T (s yn;) = (2, 0)] < |\T(n;,yn;) — (20, wi)| + |(zi, wi) — (2,w)] <
5+6<e).

(e)
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(ii) We may choose a sequence (z;,, Wi, ), (2iy, Wiy ), - - - » (%, , w;, ) such that

(x,y) € B((zio7w’io)75)7
B((zi;,wi;),0) N B((2i;,,,wi;,,),0) # D for 0 < j <n—1,
(u,v) € B((z,,w;,),0).

If we write in succession the e-pseudo-orbit from (z;,, w;,) to (2., w;,), and
then the §-pseudo-orbit from (z;,,w;,) to (z;,w;, ), etc. until we get to
the 5-pseudo-orbit from (z;,,w;,) to (2i,,w;,) then resulting concatenated
sequence is an e-chain from (z,y) to (u,v) (cf. Lemma 13.1).

|

The following result tells us that there is no distinction between the exis-
tence of fixed points and periodic points for the map 7' : Rx[0,1] — Rx [0, 1].

BROUWER PLANE THEOREM. If T : R x [0,1] — R x [0, 1] kas a periodic
point (i.e. In #1, T (x,y) = (z,y)) then T has a fized point (i.e. AT (u,v) =
(u,v)).

This is a classical result. We sketch the proof in the final section. (For
detailed proofs we refer to [2], [1].)

THEOREM 13.3 (POINCARE-BIRKHOFF). Assume thatT : A — A is an
area preserving homeomorphism and that the rotation numbers py and py for
T:R/Z x {0} - R/Z x {0} and T : R/Z x {0} — R/Z x {0}, respectively,
satisfy either pg < 0 < p1 or p1 < 0 < po. Then there exists a fixed point for
T.

REMARK. This result is also known as Poincaré’s last geometric theorem.
Usually the statement involves the existence of two distinct fixed points.

Theorem 13.3 is a special case of the following more general result.

THEOREM 13.4 (FRANKS). Assume that T : A — A is chain recurrent
and that the rotation numbers py and p1 for T : R/Z x {0} — R/Z x {0}
and T : R/Z x {0} — R/Z x {0}, respectively, satisfy either py < 0 < p1 or
p1 < 0 < po. Then there exists a fized point for T'.

PROOF OF THEOREM 13.3 (ASSUMING THEOREM 13.4). By Lemma 13.2
the hypothesis that T is area preserving implies that 7 is chain recurrent.
The results follows immediately from Theorem 13.4.

[ |

It remains to prove Theorem 13.4.

PROOF OF THEOREM 13.4. The proof of the theorem will be conveniently
divided into the following sublemmas.
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SUBLEMMA 13.4.1. Let T : R x [0,1] — R x [0,1] be the lift of a chain
recurrent homeomorphism T : A — A. There are four possibilities:
(i) T:Rx[0,1] = R x [0,1] has a chain recurrent point,

(ii) all points move to the right (i.e. ¥(z,y) € R x [0,1] if (z(™,y(™) :=
T (2, y) then lim,_, o (™ = +00),

(iii) all points move to the left (i.e. Y(z,y) € R x [0,1] we have
limy,_, o0 2(™ = —0), or

(iv) VM > 0, 3(z,y), (w,2) € R x [0,1] In,m > 1 with (z™ — 2(™)) <
~M and (w™ —w) > M.

The following result shows that case (iv) is actually redundant.

SUBLEMMA 13.4.2. Case (iv) implies case ().

SUBLEMMA 13.4.3. Let T : R x [0,1] = R x [0,1] be a lift of T : A — A.
Assume that I(xz,y) € R x [0,1], Ve > 0, I(z;,v:), ¢ = 0,...,n, such that
(.CE(), y()) = (xna yn) = ('T’y) and ‘T('T'La Z/Ai)_(xi-i-la yi+1)| <€ fO'f"l: = 07 IR (2
1. Then there exists a fixzed point for T : R x [0,1] = R x [0, 1].

Assuming these sublemmas the proof of Theorem 13.4 is now a simple
matter. By the area preserving hypothesis T': A — A is chain recurrent and
Sublemma 13.4.1 applies.

By the hypotheses on the rotation numbers of the boundaries, points on
the two boundaries move in opposite directions. Thus we see that cases (ii)
and (iii) are eliminated. If (i) holds then T has a chain recurrent point. If
(iv) holds than by Sublemma 13.4.2 this again leads to the same conclusion,
that there exists a chain recurrent point.

Finally, by Sublemma 13.4.3 the existence of a chain recurrent point im-

plies the existence of a fixed point.
[ |

We are only left with the chore of proving the sublemmas.

PROOF OF SUBLEMMA 13.4.1. Let us assume that (iv) fails, then to prove
the sublemma we need to show that either (i), (ii) or (iii) holds.

Let us assume that (iv) fails because 3M > 0, V(z,y) € R x [0,1], Vn > 1
we have that (™ — 2 > —M. We have two possibilities.

Firstly, if for some (z,y) € R x [0, 1] we have that the sequence (™) — z,
n > 1, is also bounded above then the sequence (T%(z,y))$2, is confined
to a bounded region of R x [0,1] and so must have an accumulation point
(z*,y*), say. However, for any 6 > 0 we need only choose n’ > n > 1 with
7™ (2, y) — (.,T*, y*)| < £ and T (2, y) — (x*, y*)| < ¢ and then the sequence
(=@, y(i)))?:n is a d-chain from (z*,y*) back to (z*,y*). Thus (z*,y*) is a
chain recurrent point and we are in case (i).

The second possibility is that V(z,y) € R x [0, 1] the sequence z(") — 2 >
—M (n > 0) is unbounded (i.e. 7™ may move points arbitrarily far to the
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right, but never to the left). In particular, for any C > 0 we can choose N
with z®™V) — 2 > C. Thus if n > N then z(™ — z = (a:(N))(n_N) — ) 4
(z™) —z) > =M + C. i.e. lim,_ 00 2™ = 400 (thus we are in case (ii)).
If we had assumed that (iv) failed because the second condition in (iv)
was not met then a similar argument would have given that we are in either
case (i) or case (iii).
|

ProOF OF SUBLEMMA 13.4.2. We need a preliminary observation. Con-
sider any two points (u,v), (s,t) € A; then by Lemma 13.2 (i) we can find
an e-chain (u;, ;)i from (u,v) to (s,t). Lifting this chain to R x [0, 1] we
get that there is an e-chain in R x [0, 1] from (u,v) to (s+7,t), say, for some
r € Z. In addition, n can be bounded above by a bound D, say, depending
only on € and not on the choice of (u,v) and (s,t).

Returning to the proof of Sublemma 13.4.2, assuming property (iv) let us
take M > 4D, then let (z,y), (w, z) € R x [0, 1] be the two points described
in its statement.

(a) Given any point (u,v) € R x [0,1] we can construct an e-chain from
(u,v) to (x 4+ r1,y), for some r; € Z, by the above observation (with
|’I"1| < D)

(b) We can construct an e-chain in R x [0, 1] from (z + 71,y) to (z(™ +
r2,y(")), for some ro € Z, by taking the lift of the orbit sequence
(2, "J(i))lo- By hypotheses, 7o > 4D.

(¢) We can construct an e-chain in R x [0,1] from (z(™ + ro,5(™) to
(u+ 73, v), for some r € Z, by the above observation (with |rq| < D).

Thus by Lemma 13.1 we can concatenate these to get an e-chain from (u,v)
to (u,v) + (r,0) with r > 2D

A similar argument (using the second part of property (iv)) shows that
there is an e-chain from z to z — (s,0), say, for some s € Z.

If s = r then we can use Lemma 13.1 to combine the e-chain from z to
z+(r,0) with the e-chain from z+(r,0) to 2+ (r —s,0) = z to get an e-chain
from z to itself. If r # s, we can repeat s times the e-chain (applying Lemma
13.1 repeatedly) from z to z + (r,0) (to get an e-chain from z to z + (rs,0))
followed by r times the e-chain from z to z — (s,0) (applying Lemma 13.1
repeatedly) to get from z + (rs,0) to z.

[

PrOOF OF SUBLEMMA 13.4.3. We shall first show that for each 6 > 0 we
can find a homeomorphism S : R x [0, 1] — R x [0, 1] such that S has a fixed

point and Sup(, ,)erx[o,1] |T(:E, y)—S(z,y)| < g.

By hypothesis, we can choose a g—pseudo—orbit (zi,yi),2=0,...,N, from
(x,y) to itself. We introduce a homeomorphism A : R x [0,1] — R x [0, 1]
such that h(T'(2i, yi)) = (Tit1, Yi+1) and sup(, ) erxo,1] (2, y) — (2, y)| < S.
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(Intuitively, this seems easy, although in practice it is harder to write down
details.)

If we define g(x,y) = (h o T)(z,y) then we can arrange that

A

0
sup ‘T(I,y)—S(I,y)‘ < 5 and Sn(l‘ay):(l‘ay)'
(z,y)ERX[0,1]

Thus there exists a periodic point for S and therefore by Brouwer’s theorem
there is a fixed point for S.
We observe that if we assume for a contradiction that 7' did not have
a fixed point then (by compactness of A) the same would be true for any
sufficiently close homeomorphim S. This contradicts the above construction.
Finally, this fixed point for T projects to a fixed point for T : A — A.

13.2 Outline proof of Brouwer’s theorem

In the previous section we made use of a classical (but not standard) result
of Brouwer. In this section we shall ouline the main ideas in the proof.

OUTLINE PROOF. The proof has two distinct parts:

(i) If T : R — R? is a homeomorphism with a periodic point of prime
period n > 3 then there exists a homeomorphism 7" : R> — R? with
either a fixed point or a periodic point of prime period at most 2 and
the two homeomorphisms have the same set of fixed points.

(ii) If T : R? — R? has a periodic point of prime period 2 then there
exists a fixed point.

Part (i) is proved by an iterative method. Specifically, If T : R? — R? is a
homeomorphism with a periodic point T"x = x of prime period n > 3 then
one shows there exists a homeomorphism 7" : R? — R? with a periodic point
of prime period at most n — 1 and the two homeomorphisms have the same
set of fixed points.

To see this, consider the family of balls B(z, €) about z, and their images
T (B(x,¢€)) as neighbourhoods of Tz (cf. Figure 13.1). We choose the smallest
e > 0 such that cl(B(z,€)) N T (cl (B(z,€))) # 0. We can choose a point
z € cl(B(z,¢)) N T (cl(B(x,¢))) and a path v in B(z,¢) from T~ 'z to z
(passing through z). By construction, this path v has the property that
yNT(y) = (0. Since z € v we see that T™(y) Ny # 0 and so the “first”
intersection y € T*(y) N+ (n > k > 2) gives rise to a simple closed curve
containing T'(y) U T?(y) U ... U T" !(y). The homeomorphism T can be
changed in a continuous way, or isotopied (but only in a small neighbourhood
of this closed curve), to T : R? — R? so that z becomes a point of period
k—1 for T".

Furthermore, since T' can have no fixed points on the simple closed curve
then it has some neighbourhood U in which the same is true. If we arrange
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T(B(x, €))

FiGURE 13.1. The proof of Brouwer’s theorem

that T” differs from T only in this neighbourhood, then they have the same
set of fixed points in R2.

Part (ii) is proved using some elementary topology. Assume that T :
R? — R? has a periodic point T?z = z (with x and Tz distinct). By
“adding the fixed point at infinity” oo this corresponds to a homeomorphism
on the standard 2-sphere S2. By “blowing-up” the points z and Tz into
circles we finally get a corresponding homeomorphism 7' : A — A on a closed
annulus A = S x [0, 1], say, which preserves orientation (since T : R? — R2
preserved orientation) and interchanges the two boundary components (since
T interchanged x and Txz). Finally, the universal cover of the annulus is
X =R x [0,1], and the lift T : X — X interchanges the two sides R x {0}
and R x {1}. Let 7 : X — A be the covering projection and let g : X — X
be a generator for the covering group (isomophic to Z).

A simple application of the familiar Brouwer fixed point theorem gives
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that there exist fixed points Tzo = 2o for T : X — X and (Tg)zl = 7z for
(Tg) : X — X. There are two possibilities: either 7(zy) # oo or 7(zp) = co.
In the first case, m(z) corresponds to a genuine fixed point for the original
map T : R2 — R?, and the proof is complete. In the second case, we have
that m(z;1) is distinct from m(2z9) = oo and so it corresponds to a genuine
fixed point for the original map T : R? — R2.

|

13.3 Comments and references

The Poincaré-Birkhoff theorem usual guarantees the existence of two fixed
points. However, the theorem of Franks has much weaker hypotheses [3].

Modern proofs of the Brouwer plane translation theorem can be found in
[1] and [2].
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